Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Feb;5(2):203–213. doi: 10.1105/tpc.5.2.203

Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors.

A H Atkinson 1, R L Heath 1, R J Simpson 1, A E Clarke 1, M A Anderson 1
PMCID: PMC160263  PMID: 8453302

Abstract

A cDNA clone, NA-PI-II, encoding a protein with partial identity to proteinase inhibitor (PI) II of potato and tomato has been isolated from a cDNA library constructed from Nicotiana alata stigma and style mRNA. The cDNA encodes a polypeptide of 397 amino acids with a putative signal peptide of 29 amino acids and six repeated domains, each with a potential reactive site. Domains 1 and 2 have chymotrypsin-specific sites and domains 3, 4, 5, and 6 have sites specific for trypsin. In situ hybridization experiments demonstrated that expression of the gene is restricted to the stigma of both immature and mature pistils. Peptides with inhibitory activity toward chymotrypsin and trypsin have been isolated from stigmas of N. alata. The N-terminal amino acid sequence obtained from this protein preparation corresponds to six regions in the cDNA clone NA-PI-II. The purified PI protein preparation is likely to be composed of a mixture of up to five similar peptides of approximately 6 kD, produced in vivo by proteolytic processing of a 42-kD precursor. The PI may function to protect the reproductive tissue against potential pathogens.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. A., McFadden G. I., Bernatzky R., Atkinson A., Orpin T., Dedman H., Tregear G., Fernley R., Clarke A. E. Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata. Plant Cell. 1989 May;1(5):483–491. doi: 10.1105/tpc.1.5.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Brown W. E., Ryan C. A. Isolation and characterization of a wound-induced trypsin inhibitor from alfalfa leaves. Biochemistry. 1984 Jul 17;23(15):3418–3422. doi: 10.1021/bi00310a006. [DOI] [PubMed] [Google Scholar]
  4. Bryant J., Green T. R., Gurusaddaiah T., Ryan C. A. Proteinase inhibitor II from potatoes: isolation and characterization of its protomer components. Biochemistry. 1976 Aug 10;15(16):3418–3424. doi: 10.1021/bi00661a004. [DOI] [PubMed] [Google Scholar]
  5. Douglass J., Civelli O., Herbert E. Polyprotein gene expression: generation of diversity of neuroendocrine peptides. Annu Rev Biochem. 1984;53:665–715. doi: 10.1146/annurev.bi.53.070184.003313. [DOI] [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  7. Graham J. S., Pearce G., Merryweather J., Titani K., Ericsson L. H., Ryan C. A. Wound-induced proteinase inhibitors from tomato leaves. II. The cDNA-deduced primary structure of pre-inhibitor II. J Biol Chem. 1985 Jun 10;260(11):6561–6564. [PubMed] [Google Scholar]
  8. Green T. R., Ryan C. A. Wound-Induced Proteinase Inhibitor in Plant Leaves: A Possible Defense Mechanism against Insects. Science. 1972 Feb 18;175(4023):776–777. doi: 10.1126/science.175.4023.776. [DOI] [PubMed] [Google Scholar]
  9. Greenblatt H. M., Ryan C. A., James M. N. Structure of the complex of Streptomyces griseus proteinase B and polypeptide chymotrypsin inhibitor-1 from Russet Burbank potato tubers at 2.1 A resolution. J Mol Biol. 1989 Jan 5;205(1):201–228. doi: 10.1016/0022-2836(89)90376-8. [DOI] [PubMed] [Google Scholar]
  10. Grego B., Van Driel I. R., Stearne P. A., Goding J. W., Nice E. C., Simpson R. J. A microbore high-performance liquid chromatography strategy for the purification of polypeptides for gas-phase sequence analysis. Structural studies on the murine transferrin receptor. Eur J Biochem. 1985 May 2;148(3):485–491. doi: 10.1111/j.1432-1033.1985.tb08865.x. [DOI] [PubMed] [Google Scholar]
  11. Hara-Nishimura I., Inoue K., Nishimura M. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett. 1991 Dec 2;294(1-2):89–93. doi: 10.1016/0014-5793(91)81349-d. [DOI] [PubMed] [Google Scholar]
  12. Hass G. M., Hermodson M. A., Ryan C. A., Gentry L. Primary structures of two low molecular weight proteinase inhibitors from potatoes. Biochemistry. 1982 Feb 16;21(4):752–756. doi: 10.1021/bi00533a027. [DOI] [PubMed] [Google Scholar]
  13. Krieger D. T. Brain peptides: what, where, and why? Science. 1983 Dec 2;222(4627):975–985. doi: 10.1126/science.6139875. [DOI] [PubMed] [Google Scholar]
  14. Kuo T. M., Pearce G., Ryan C. A. Isolation and characterization of proteinase inhibitor I from etiolated tobacco leaves. Arch Biochem Biophys. 1984 May 1;230(2):504–510. doi: 10.1016/0003-9861(84)90430-2. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Melville J. C., Ryan C. A. Chymotrypsin inhibitor 1 from potatoes: a multisite inhibitor composed of subunits. Arch Biochem Biophys. 1970 Jun;138(2):700–702. doi: 10.1016/0003-9861(70)90399-1. [DOI] [PubMed] [Google Scholar]
  17. Pearce G., Sy L., Russell C., Ryan C. A., Hass G. M. Isolation and characterization from potato tubers of two polypeptide inhibitors of serine proteinases. Arch Biochem Biophys. 1982 Feb;213(2):456–462. doi: 10.1016/0003-9861(82)90571-9. [DOI] [PubMed] [Google Scholar]
  18. Pena-Cortes H., Willmitzer L., Sanchez-Serrano J. J. Abscisic Acid Mediates Wound Induction but Not Developmental-Specific Expression of the Proteinase Inhibitor II Gene Family. Plant Cell. 1991 Sep;3(9):963–972. doi: 10.1105/tpc.3.9.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Plunkett G., Senear D. F., Zuroske G., Ryan C. A. Proteinase inhibitors I and II from leaves of wounded tomato plants: purification and properties. Arch Biochem Biophys. 1982 Feb;213(2):463–472. doi: 10.1016/0003-9861(82)90572-0. [DOI] [PubMed] [Google Scholar]
  20. Scott M. P., Jung R., Muntz K., Nielsen N. C. A protease responsible for post-translational cleavage of a conserved Asn-Gly linkage in glycinin, the major seed storage protein of soybean. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):658–662. doi: 10.1073/pnas.89.2.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Steiner D. F., Quinn P. S., Chan S. J., Marsh J., Tager H. S. Processing mechanisms in the biosynthesis of proteins. Ann N Y Acad Sci. 1980;343:1–16. doi: 10.1111/j.1749-6632.1980.tb47238.x. [DOI] [PubMed] [Google Scholar]
  22. Thornburg R. W., An G., Cleveland T. E., Johnson R., Ryan C. A. Wound-inducible expression of a potato inhibitor II-chloramphenicol acetyltransferase gene fusion in transgenic tobacco plants. Proc Natl Acad Sci U S A. 1987 Feb;84(3):744–748. doi: 10.1073/pnas.84.3.744. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES