Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Mar;5(3):289–296. doi: 10.1105/tpc.5.3.289

Carbon Sink-to-Source Transition Is Coordinated with Establishment of Cell-Specific Gene Expression in a C4 Plant.

JL Wang 1, R Turgeon 1, JP Carr 1, JO Berry 1
PMCID: PMC160270  PMID: 12271064

Abstract

Plants that use the highly efficient C4 photosynthetic pathway possess two types of specialized leaf cells, the mesophyll and bundle sheath. In mature C4 leaves, the CO2 fixation enzyme ribulose-1,5-bisphosphate carboxylase (RuBPCase) is specifically compartmentalized to the bundle sheath cells. However, in very young leaves of amaranth, a dicotyledonous C4 plant, genes encoding the large subunit and small subunit of RuBPCase are initially expressed in both photosynthetic cell types. We show here that the RuBPCase mRNAs and proteins become specifically localized to leaf bundle sheath cells during the developmental transition of the leaf from carbon sink to carbon source. Bundle sheath cell-specific expression of RuBPCase genes and the sink-to-source transition began initially at the leaf apex and progressed rapidly and coordinately toward the leaf base. These findings demonstrated that two developmental transitions, the change in photoassimilate transport status and the establishment of bundle sheath cell-specific RuBPCase gene expression, are tightly coordinated during C4 leaf development. This correlation suggests that processes associated with the accumulation and transport of photosynthetic compounds may influence patterns of photosynthetic gene expression in C4 plants.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry J. O., Nikolau B. J., Carr J. P., Klessig D. F. Transcriptional and post-transcriptional regulation of ribulose 1,5-bisphosphate carboxylase gene expression in light- and dark-grown amaranth cotyledons. Mol Cell Biol. 1985 Sep;5(9):2238–2246. doi: 10.1128/mcb.5.9.2238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Langdale J. A., Metzler M. C., Nelson T. The argentia mutation delays normal development of photosynthetic cell-types in Zea mays. Dev Biol. 1987 Jul;122(1):243–255. doi: 10.1016/0012-1606(87)90349-6. [DOI] [PubMed] [Google Scholar]
  3. Langdale J. A., Nelson T. Spatial regulation of photosynthetic development in C4 plants. Trends Genet. 1991 Jun;7(6):191–196. doi: 10.1016/0168-9525(91)90435-s. [DOI] [PubMed] [Google Scholar]
  4. Langdale J. A., Rothermel B. A., Nelson T. Cellular pattern of photosynthetic gene expression in developing maize leaves. Genes Dev. 1988 Jan;2(1):106–115. doi: 10.1101/gad.2.1.106. [DOI] [PubMed] [Google Scholar]
  5. Langdale J. A., Zelitch I., Miller E., Nelson T. Cell position and light influence C4 versus C3 patterns of photosynthetic gene expression in maize. EMBO J. 1988 Dec 1;7(12):3643–3651. doi: 10.1002/j.1460-2075.1988.tb03245.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Miziorko H. M., Lorimer G. H. Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu Rev Biochem. 1983;52:507–535. doi: 10.1146/annurev.bi.52.070183.002451. [DOI] [PubMed] [Google Scholar]
  7. Müller-Röber B., Sonnewald U., Willmitzer L. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J. 1992 Apr;11(4):1229–1238. doi: 10.1002/j.1460-2075.1992.tb05167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nelson T., Langdale J. A. Patterns of leaf development in C4 plants. Plant Cell. 1989 Jan;1(1):3–13. doi: 10.1105/tpc.1.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sheen J. Y., Bogorad L. Differential expression of the ribulose bisphosphate carboxylase large subunit gene in bundle sheath and mesophyll cells of developing maize leaves is influenced by light. Plant Physiol. 1985 Dec;79(4):1072–1076. doi: 10.1104/pp.79.4.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sheen J. Y., Bogorad L. Expression of the ribulose-1,5-bisphosphate carboxylase large subunit gene and three small subunit genes in two cell types of maize leaves. EMBO J. 1986 Dec 20;5(13):3417–3422. doi: 10.1002/j.1460-2075.1986.tb04663.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sheen J. Metabolic repression of transcription in higher plants. Plant Cell. 1990 Oct;2(10):1027–1038. doi: 10.1105/tpc.2.10.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES