Abstract
The gai mutation of Arabidopsis confers a dwarf phenotype resembling that of mutants defective in gibberellin (GA) biosynthesis. However, gai mutant plants differ from GA biosynthesis mutants because they fail to respond to exogenous GAs and accumulate endogenous GA species to higher (rather than lower) levels than found in wild-type controls. The gai mutation, therefore, identifies a gene that modulates the response of plant cells to GA. We have mapped gai with respect to visible and restriction fragment length polymorphism (RFLP) markers from chromosome 1. To observe the phenotype exhibited by individuals potentially lacking wild-type (GAI) function, we have also isolated novel irradiation-induced derivative alleles of gai. When homozygous, these alleles confer a revertant phenotype that is indistinguishable from the wild type. gai is a semidominant mutation that exerts its effects either because it is a gain-of-function mutation or because it is a loss-of-function or reduced-function mutation. The genetic and physiological properties of the derivative alleles are considered with reference to these alternative modes of dominance of gai. Because these alleles are potential deletion or rearrangement mutations, together with the closely linked RFLP markers identified in the linkage mapping experiments, they provide useful resources for the isolation of the gai locus via a map-based cloning approach.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Grill E., Somerville C. Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking. Mol Gen Genet. 1991 May;226(3):484–490. doi: 10.1007/BF00260662. [DOI] [PubMed] [Google Scholar]
- Grill E., Somerville C. Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking. Mol Gen Genet. 1991 May;226(3):484–490. doi: 10.1007/BF00260662. [DOI] [PubMed] [Google Scholar]
- Hake S., Vollbrecht E., Freeling M. Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J. 1989 Jan;8(1):15–22. doi: 10.1002/j.1460-2075.1989.tb03343.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hake S., Vollbrecht E., Freeling M. Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J. 1989 Jan;8(1):15–22. doi: 10.1002/j.1460-2075.1989.tb03343.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harberd N. P., Freeling M. Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics. 1989 Apr;121(4):827–838. doi: 10.1093/genetics/121.4.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harberd N. P., Freeling M. Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics. 1989 Apr;121(4):827–838. doi: 10.1093/genetics/121.4.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang I., Kohchi T., Hauge B. M., Goodman H. M., Schmidt R., Cnops G., Dean C., Gibson S., Iba K., Lemieux B. Identification and map position of YAC clones comprising one-third of the Arabidopsis genome. Plant J. 1991 Nov;1(3):367–374. doi: 10.1046/j.1365-313x.1991.t01-5-00999.x. [DOI] [PubMed] [Google Scholar]
- Hwang I., Kohchi T., Hauge B. M., Goodman H. M., Schmidt R., Cnops G., Dean C., Gibson S., Iba K., Lemieux B. Identification and map position of YAC clones comprising one-third of the Arabidopsis genome. Plant J. 1991 Nov;1(3):367–374. doi: 10.1046/j.1365-313x.1991.t01-5-00999.x. [DOI] [PubMed] [Google Scholar]
- Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park E. C., Horvitz H. R. Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. Genetics. 1986 Aug;113(4):821–852. doi: 10.1093/genetics/113.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirley B. W., Hanley S., Goodman H. M. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell. 1992 Mar;4(3):333–347. doi: 10.1105/tpc.4.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun Tp., Goodman H. M., Ausubel F. M. Cloning the Arabidopsis GA1 Locus by Genomic Subtraction. Plant Cell. 1992 Feb;4(2):119–128. doi: 10.1105/tpc.4.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swinburne J., Balcells L., Scofield S. R., Jones J. D., Coupland G. Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation excision in Arabidopsis. Plant Cell. 1992 May;4(5):583–595. doi: 10.1105/tpc.4.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talon M., Koornneef M., Zeevaart J. A. Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7983–7987. doi: 10.1073/pnas.87.20.7983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talon M., Zeevaart J. A. Gibberellins and Stem Growth as Related to Photoperiod in Silene armeria L. Plant Physiol. 1990 Apr;92(4):1094–1100. doi: 10.1104/pp.92.4.1094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkinson J. Q., Crawford N. M. Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. Plant Cell. 1991 May;3(5):461–471. doi: 10.1105/tpc.3.5.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson R. N., Heckman J. W., Somerville C. R. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol. 1992 Sep;100(1):403–408. doi: 10.1104/pp.100.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]