Abstract
The differentiation and development of ovules in orchid flowers are pollination dependent. To define the developmental signals and timing of critical events associated with ovule differentiation, we have examined factors that regulate the initial events in megasporogenesis and female gametophyte development and characterized its progression toward maturity and fertilization. Two days after pollination, ovary wall epidermal cells begin to elongate and form hair cells; this is the earliest visible morphological change, and it occurs at least 3 days prior to pollen germination, indicating that signals associated with pollination itself trigger these early events. The effects of inhibitors of ethylene biosynthesis on early morphological changes indicated that ethylene, in the presence of auxin, is required to initiate ovary development and, indirectly, subsequent ovule differentiation. Surprisingly, pollen germination and growth were also strongly inhibited by inhibitors of ethylene biosynthesis, indicating that male gametophyte development is also regulated by ethylene. Detailed characterization of the development of both the female and male gametophyte in pollinated orchid flowers indicated that pollen tubes entered the ovary and grew along the ovary wall for 10 to 35 days, at which time growth was arrested. Approximately 40 days after pollination, coincident with ovule differentiation as indicated by the presence of a single archesporial cell, the direction of pollen tube growth became redirected toward the ovule, suggesting a chemical signaling between the developing ovule and male gametophyte. Taken together, these results indicate that both auxin and ethylene contribute to the regulation of both ovary and ovule development and to the coordination of development of male and female gametophytes.
Full Text
The Full Text of this article is available as a PDF (4.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowman J. L., Smyth D. R., Meyerowitz E. M. Genes directing flower development in Arabidopsis. Plant Cell. 1989 Jan;1(1):37–52. doi: 10.1105/tpc.1.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowman J. L., Smyth D. R., Meyerowitz E. M. Genetic interactions among floral homeotic genes of Arabidopsis. Development. 1991 May;112(1):1–20. doi: 10.1242/dev.112.1.1. [DOI] [PubMed] [Google Scholar]
- Drews G. N., Goldberg R. B. Genetic control of flower development. Trends Genet. 1989 Aug;5(8):256–261. doi: 10.1016/0168-9525(89)90098-x. [DOI] [PubMed] [Google Scholar]
- Drubin D. G. Development of cell polarity in budding yeast. Cell. 1991 Jun 28;65(7):1093–1096. doi: 10.1016/0092-8674(91)90001-f. [DOI] [PubMed] [Google Scholar]
- Hanson D. D., Hamilton D. A., Travis J. L., Bashe D. M., Mascarenhas J. P. Characterization of a pollen-specific cDNA clone from Zea mays and its expression. Plant Cell. 1989 Feb;1(2):173–179. doi: 10.1105/tpc.1.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoekstra F. A., van Roekel T. Effects of Previous Pollination and Stylar Ethylene on Pollen Tube Growth in Petunia hybrida Styles. Plant Physiol. 1988 Jan;86(1):4–6. doi: 10.1104/pp.86.1.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly A. J., Zagotta M. T., White R. A., Chang C., Meeks-Wagner D. R. Identification of genes expressed in the tobacco shoot apex during the floral transition. Plant Cell. 1990 Oct;2(10):963–972. doi: 10.1105/tpc.2.10.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell. 1990 Dec;2(12):1201–1224. doi: 10.1105/tpc.2.12.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lotlikar P. D., Remmert L. F. Intermediate reactions of oxidative phosphorylation in mitochondria from cabbage. Plant Physiol. 1968 Mar;43(3):327–332. doi: 10.1104/pp.43.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mascarenhas J. P. The Male Gametophyte of Flowering Plants. Plant Cell. 1989 Jul;1(7):657–664. doi: 10.1105/tpc.1.7.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meeks-Wagner D. R., Dennis E. S., Tran Thanh Van K., Peacock W. J. Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development. Plant Cell. 1989 Jan;1(1):25–35. doi: 10.1105/tpc.1.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melzer S., Majewski D. M., Apel K. Early Changes in Gene Expression during the Transition from Vegetative to Generative Growth in the Long-Day Plant Sinapis alba. Plant Cell. 1990 Oct;2(10):953–961. doi: 10.1105/tpc.2.10.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Neill S. D., Nadeau J. A., Zhang X. S., Bui A. Q., Halevy A. H. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell. 1993 Apr;5(4):419–432. doi: 10.1105/tpc.5.4.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson-Beers K., Pruitt R. E., Gasser C. S. Ovule Development in Wild-Type Arabidopsis and Two Female-Sterile Mutants. Plant Cell. 1992 Oct;4(10):1237–1249. doi: 10.1105/tpc.4.10.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwarz-Sommer Z., Huijser P., Nacken W., Saedler H., Sommer H. Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science. 1990 Nov 16;250(4983):931–936. doi: 10.1126/science.250.4983.931. [DOI] [PubMed] [Google Scholar]
- Sfakiotakis E. M., Simons D. H., Dilley D. R. Pollen germination and tube growth: dependent on carbon dioxide and independent of ethylene. Plant Physiol. 1972 Jun;49(6):963–967. doi: 10.1104/pp.49.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- St Johnston D., Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell. 1992 Jan 24;68(2):201–219. doi: 10.1016/0092-8674(92)90466-p. [DOI] [PubMed] [Google Scholar]
- Theologis A. One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell. 1992 Jul 24;70(2):181–184. doi: 10.1016/0092-8674(92)90093-r. [DOI] [PubMed] [Google Scholar]
- Ursin V. M., Yamaguchi J., McCormick S. Gametophytic and sporophytic expression of anther-specific genes in developing tomato anthers. Plant Cell. 1989 Jul;1(7):727–736. doi: 10.1105/tpc.1.7.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu Y. B., Yang S. F. Auxin-induced Ethylene Production and Its Inhibition by Aminoethyoxyvinylglycine and Cobalt Ion. Plant Physiol. 1979 Dec;64(6):1074–1077. doi: 10.1104/pp.64.6.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
