Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Apr;5(4):451–463. doi: 10.1105/tpc.5.4.451

Electron Transport Regulates Cellular Differentiation in the Filamentous Cyanobacterium Calothrix.

D Campbell 1, J Houmard 1, NT De Marsac 1
PMCID: PMC160284  PMID: 12271071

Abstract

Differentiation of the filamentous cyanobacteria Calothrix sp strains PCC 7601 and PCC 7504 is regulated by light spectral quality. Vegetative filaments differentiate motile, gas-vacuolated hormogonia after transfer to fresh medium and incubation under red light. Hormogonia are transient and give rise to vegetative filaments, or to heterocystous filaments if fixed nitrogen is lacking. If incubated under green light after transfer to fresh medium, vegetative filaments do not differentiate hormogonia but may produce heterocysts directly, even in the presence of combined nitrogen. We used inhibitors of thylakoid electron transport (3-[3,4-dichlorophenyl]-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) to show that the opposing effects of red and green light on cell differentiation arise through differential excitations of photosystems I and II. Red light excitation of photosystem I oxidizes the plastoquinone pool, stimulating differentiation of hormogonia and inhibiting heterocyst differentiation. Conversely, net reduction of plastoquinone by green light excitation of photosystem II inhibits differentiation of hormogonia and stimulates heterocyst differentiation. This photoperception mechanism is distinct from the light regulation of complementary chromatic adaptation of phycobilisome constituents. Although complementary chromatic adaptation operates independently of the photocontrol of cellular differentiation, these two regulatory processes are linked, because the general expression of phycobiliprotein genes is transiently repressed during hormogonium differentiation. In addition, absorbance by phycobilisomes largely determines the light wavelengths that excite photosystem II, and thus the wavelengths that can imbalance electron transport.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett A., Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol. 1973 Aug;58(2):419–435. doi: 10.1083/jcb.58.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buikema W. J., Haselkorn R. Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Genes Dev. 1991 Feb;5(2):321–330. doi: 10.1101/gad.5.2.321. [DOI] [PubMed] [Google Scholar]
  3. Capuano V., Mazel D., Tandeau de Marsac N., Houmard J. Complete nucleotide sequence of the red-light specific set of phycocyanin genes from the cyanobacterium Calothrix PCC 7601. Nucleic Acids Res. 1988 Feb 25;16(4):1626–1626. doi: 10.1093/nar/16.4.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Csiszàr K., Houmard J., Damerval T., Tandeau de Marsac N. Transcriptional analysis of the cyanobacterial gvpABC operon in differentiated cells: occurrence of an antisense RNA complementary to three overlapping transcripts. Gene. 1987;60(1):29–37. doi: 10.1016/0378-1119(87)90210-1. [DOI] [PubMed] [Google Scholar]
  5. Damerval T., Houmard J., Guglielmi G., Csiszar K., Tandeau de Marsac N. A developmentally regulated gvpABC operon is involved in the formation of gas vesicles in the cyanobacterium Calothrix 7601. Gene. 1987;54(1):83–92. doi: 10.1016/0378-1119(87)90350-7. [DOI] [PubMed] [Google Scholar]
  6. Gendel S., Ohad I., Bogorad L. Control of Phycoerythrin Synthesis during Chromatic Adaptation. Plant Physiol. 1979 Nov;64(5):786–790. doi: 10.1104/pp.64.5.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Houmard J., Capuano V., Coursin T., Tandeau de Marsac N. Genes encoding core components of the phycobilisome in the cyanobacterium Calothrix sp. strain PCC 7601: occurrence of a multigene family. J Bacteriol. 1988 Dec;170(12):5512–5521. doi: 10.1128/jb.170.12.5512-5521.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lönneborg A., Lind L. K., Kalla S. R., Gustafsson P., Oquist G. Acclimation Processes in the Light-Harvesting System of the Cyanobacterium Anacystis nidulans following a Light Shift from White to Red Light. Plant Physiol. 1985 May;78(1):110–114. doi: 10.1104/pp.78.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mulligan M. E., Haselkorn R. Nitrogen fixation (nif) genes of the cyanobacterium Anabaena species strain PCC 7120. The nifB-fdxN-nifS-nifU operon. J Biol Chem. 1989 Nov 15;264(32):19200–19207. [PubMed] [Google Scholar]
  10. Oelmüller R., Grossman A. R., Briggs W. R. Photoreversibility of the Effect of Red and Green Light Pulses on the Accumulation in Darkness of mRNAs Coding for Phycocyanin and Phycoerythrin in Fremyella diplosiphon. Plant Physiol. 1988 Dec;88(4):1084–1091. doi: 10.1104/pp.88.4.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Peschek G. A. Restoration of respiratory electron-transport reactions in quinone-depleted particle preparations from Anacystis nidulans. Biochem J. 1980 Feb 15;186(2):515–523. doi: 10.1042/bj1860515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Peschek G. A., Schmetterer G. Evidence for plastoquinol-cytochrome f/b-563 reductase as a common electron donor to P700 and cytochrome oxidase in cyanobacteria. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1188–1195. doi: 10.1016/0006-291x(82)92126-x. [DOI] [PubMed] [Google Scholar]
  13. Stanier R. Y., Cohen-Bazire G. Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol. 1977;31:225–274. doi: 10.1146/annurev.mi.31.100177.001301. [DOI] [PubMed] [Google Scholar]
  14. Tsinoremas N. F., Castets A. M., Harrison M. A., Allen J. F., Tandeau de Marsac N. Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of posttranslational modification of the glnB gene product. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4565–4569. doi: 10.1073/pnas.88.11.4565. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES