Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 May;5(5):523–530. doi: 10.1105/tpc.5.5.523

Ethylene Signal Is Transduced via Protein Phosphorylation Events in Plants.

V Raz 1, R Fluhr 1
PMCID: PMC160290  PMID: 12271074

Abstract

A plethora of abiotic and biotic environmental stresses exert their influence on plants via the gaseous hormone ethylene. In addition, aspects of plant development and climacteric fruit ripening are regulated by ethylene. Sensitivity to ethylene is presumably mediated by a specific ethylene receptor whose activation signal is then transduced via an unknown cascade pathway. We have used the plant pathogenesis response, exemplified by the induction of pathogenesis-related (PR) genes, as a paradigm to investigate ethylene-dependent signal transduction in the plant cell. Ethylene application induced very rapid and transient protein phosphorylation in tobacco leaves. In the presence of the kinase inhibitors H-7 and K-252a, the transient rise in phosphorylation and the induced expression of PR genes were abolished. Similarly, these inhibitors blocked the response induced by an ethylene-dependent elicitor, [alpha]-AB. Reciprocally, application of okadaic acid, a specific inhibitor of phosphatases type 1 and type 2A, enhanced total protein phosphorylation and by itself elicited the accumulation of PR proteins. In the presence of H-7 and K-252a, PR protein accumulation induced by okadaic acid was blocked. In contrast to the action of ethylene and [alpha]-AB, xylanase elicits the accumulation of PR protein by an ethylene-independent pathway. Xylanase-induced PR protein accumulation was not affected by H-7 and K-252a. The results indicate that responsiveness to ethylene in leaves is transduced via putative phosphorylated intermediates that are regulated by specific kinases and phosphatases.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. F. How does protein phosphorylation regulate photosynthesis? Trends Biochem Sci. 1992 Jan;17(1):12–17. doi: 10.1016/0968-0004(92)90418-9. [DOI] [PubMed] [Google Scholar]
  2. Brederode F. T., Linthorst H. J., Bol J. F. Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol. 1991 Dec;17(6):1117–1125. doi: 10.1007/BF00028729. [DOI] [PubMed] [Google Scholar]
  3. Brogue K., Chet I., Holliday M., Cressman R., Biddle P., Knowlton S., Mauvais C. J., Broglie R. Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani. Science. 1991 Nov 22;254(5035):1194–1197. doi: 10.1126/science.254.5035.1194. [DOI] [PubMed] [Google Scholar]
  4. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  5. Cohen P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature. 1982 Apr 15;296(5858):613–620. doi: 10.1038/296613a0. [DOI] [PubMed] [Google Scholar]
  6. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  7. Dietrich A., Mayer J. E., Hahlbrock K. Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures. J Biol Chem. 1990 Apr 15;265(11):6360–6368. [PubMed] [Google Scholar]
  8. Dilworth D. D., McCarrey J. R. Single-step elimination of contaminating DNA prior to reverse transcriptase PCR. PCR Methods Appl. 1992 May;1(4):279–282. doi: 10.1101/gr.1.4.279. [DOI] [PubMed] [Google Scholar]
  9. Ecker J. R., Davis R. W. Plant defense genes are regulated by ethylene. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5202–5206. doi: 10.1073/pnas.84.15.5202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Enyedi A. J., Yalpani N., Silverman P., Raskin I. Signal molecules in systemic plant resistance to pathogens and pests. Cell. 1992 Sep 18;70(6):879–886. doi: 10.1016/0092-8674(92)90239-9. [DOI] [PubMed] [Google Scholar]
  11. Eyal Y., Sagee O., Fluhr R. Dark-induced accumulation of a basic pathogenesis-related (PR-1) transcript and a light requirement for its induction by ethylene. Plant Mol Biol. 1992 Jul;19(4):589–599. doi: 10.1007/BF00026785. [DOI] [PubMed] [Google Scholar]
  12. Gat-Yablonski G., Sagi-Eisenberg R. Differential down-regulation of protein kinase C selectively affects IgE-dependent exocytosis and inositol trisphosphate formation. Biochem J. 1990 Sep 15;270(3):679–684. doi: 10.1042/bj2700679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grosskopf D. G., Felix G., Boller T. K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro. FEBS Lett. 1990 Nov 26;275(1-2):177–180. doi: 10.1016/0014-5793(90)81466-2. [DOI] [PubMed] [Google Scholar]
  14. Guy G. R., Cao X., Chua S. P., Tan Y. H. Okadaic acid mimics multiple changes in early protein phosphorylation and gene expression induced by tumor necrosis factor or interleukin-1. J Biol Chem. 1992 Jan 25;267(3):1846–1852. [PubMed] [Google Scholar]
  15. Hardie D. G. Roles of protein kinases and phosphatases in signal transduction. Symp Soc Exp Biol. 1990;44:241–255. [PubMed] [Google Scholar]
  16. Haystead T. A., Sim A. T., Carling D., Honnor R. C., Tsukitani Y., Cohen P., Hardie D. G. Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature. 1989 Jan 5;337(6202):78–81. doi: 10.1038/337078a0. [DOI] [PubMed] [Google Scholar]
  17. Kawamoto S., Hidaka H. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7) is a selective inhibitor of protein kinase C in rabbit platelets. Biochem Biophys Res Commun. 1984 Nov 30;125(1):258–264. doi: 10.1016/s0006-291x(84)80362-9. [DOI] [PubMed] [Google Scholar]
  18. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  19. Kruijer W., Cooper J. A., Hunter T., Verma I. M. Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein. Nature. 1984 Dec 20;312(5996):711–716. doi: 10.1038/312711a0. [DOI] [PubMed] [Google Scholar]
  20. Lotan T., Fluhr R. Xylanase, a novel elicitor of pathogenesis-related proteins in tobacco, uses a non-ethylene pathway for induction. Plant Physiol. 1990 Jun;93(2):811–817. doi: 10.1104/pp.93.2.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MacKintosh R. W., Haycox G., Hardie D. G., Cohen P. T. Identification by molecular cloning of two cDNA sequences from the plant Brassica napus which are very similar to mammalian protein phosphatases-1 and -2A. FEBS Lett. 1990 Dec 10;276(1-2):156–160. doi: 10.1016/0014-5793(90)80531-m. [DOI] [PubMed] [Google Scholar]
  22. Mauch F., Hadwiger L. A., Boller T. Ethylene: Symptom, Not Signal for the Induction of Chitinase and beta-1,3-Glucanase in Pea Pods by Pathogens and Elicitors. Plant Physiol. 1984 Nov;76(3):607–611. doi: 10.1104/pp.76.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nagamine Y., Ziegler A. Okadaic acid induction of the urokinase-type plasminogen activator gene occurs independently of cAMP-dependent protein kinase and protein kinase C and is sensitive to protein synthesis inhibition. EMBO J. 1991 Jan;10(1):117–122. doi: 10.1002/j.1460-2075.1991.tb07927.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Raz V., Fluhr R. Calcium Requirement for Ethylene-Dependent Responses. Plant Cell. 1992 Sep;4(9):1123–1130. doi: 10.1105/tpc.4.9.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES