Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Aug;5(8):921–930. doi: 10.1105/tpc.5.8.921

Functionally Homologous Host Components Recognize Potato Virus X in Gomphrena globosa and Potato.

MG Goulden 1, DC Baulcombe 1
PMCID: PMC160327  PMID: 12271090

Abstract

All known isolates of potato virus X (PVX), with the exception of a South American isolate PVXHB, induce an extreme resistance response on potato carrying the Rx gene and elicit the production of necrotic lesions on Gomphrena globosa: PVXHB establishes systemic infection on Rx genotypes of potato and infects the inoculated leaf of G. globosa without lesion formation. Previously, we have shown that the Rx-mediated resistance is affected by a feature of the coat protein that depends on the presence of a threonine residue at position 121 in the coat protein of PVXCP4 and that the resistance is an induced response expressed in protoplasts of potato with the Rx genotype. In this study, we provide evidence, based on the analysis of PVXCP4/PVXHB hybrids, that the elicitation of lesions on G. globosa also requires the presence of a threonine residue at position 121 of the viral coat protein. The lesion-forming phenotype was not associated with the ability of the viral isolate to accumulate in the infected plant. We therefore propose that there is a homologous component of both potato carrying Rx and G. globosa that interacts with a feature of the PVX coat protein and, following the interaction, activates an induced response in the plant cell.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baratova L. A., Grebenshchikov N. I., Dobrov E. N., Gedrovich A. V., Kashirin I. A., Shishkov A. V., Efimov A. V., Järvekülg L., Radavsky Y. L., Saarma M. The organization of potato virus X coat proteins in virus particles studied by tritium planigraphy and model building. Virology. 1992 May;188(1):175–180. doi: 10.1016/0042-6822(92)90747-d. [DOI] [PubMed] [Google Scholar]
  2. Baratova L. A., Grebenshchikov N. I., Shishkov A. V., Kashirin I. A., Radavsky J. L., Järvekülg L., Saarma M. The topography of the surface of potato virus X: tritium planigraphy and immunological analysis. J Gen Virol. 1992 Feb;73(Pt 2):229–235. doi: 10.1099/0022-1317-73-2-229. [DOI] [PubMed] [Google Scholar]
  3. Bowles D. J. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. doi: 10.1146/annurev.bi.59.070190.004301. [DOI] [PubMed] [Google Scholar]
  4. Dangl J. L., Ritter C., Gibbon M. J., Mur L. A., Wood J. R., Goss S., Mansfield J., Taylor J. D., Vivian A. Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea. Plant Cell. 1992 Nov;4(11):1359–1369. doi: 10.1105/tpc.4.11.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jakobek J. L., Lindgren P. B. Generalized Induction of Defense Responses in Bean Is Not Correlated with the Induction of the Hypersensitive Reaction. Plant Cell. 1993 Jan;5(1):49–56. doi: 10.1105/tpc.5.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jones D. H., Howard B. H. A rapid method for recombination and site-specific mutagenesis by placing homologous ends on DNA using polymerase chain reaction. Biotechniques. 1991 Jan;10(1):62–66. [PubMed] [Google Scholar]
  7. Kavanagh T., Goulden M., Santa Cruz S., Chapman S., Barker I., Baulcombe D. Molecular analysis of a resistance-breaking strain of potato virus X. Virology. 1992 Aug;189(2):609–617. doi: 10.1016/0042-6822(92)90584-c. [DOI] [PubMed] [Google Scholar]
  8. Keen N. T. Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet. 1990;24:447–463. doi: 10.1146/annurev.ge.24.120190.002311. [DOI] [PubMed] [Google Scholar]
  9. Knorr D. A., Dawson W. O. A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc Natl Acad Sci U S A. 1988 Jan;85(1):170–174. doi: 10.1073/pnas.85.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lamb C. J., Ryals J. A., Ward E. R., Dixon R. A. Emerging strategies for enhancing crop resistance to microbial pathogens. Biotechnology (N Y) 1992 Nov;10(11):1436–1445. doi: 10.1038/nbt1192-1436. [DOI] [PubMed] [Google Scholar]
  11. Padgett H. S., Beachy R. N. Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. Plant Cell. 1993 May;5(5):577–586. doi: 10.1105/tpc.5.5.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Saito T., Meshi T., Takamatsu N., Okada Y. Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6074–6077. doi: 10.1073/pnas.84.17.6074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J. P., Ryals J. A. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Whalen M. C., Innes R. W., Bent A. F., Staskawicz B. J. Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell. 1991 Jan;3(1):49–59. doi: 10.1105/tpc.3.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Whalen M. C., Stall R. E., Staskawicz B. J. Characterization of a gene from a tomato pathogen determining hypersensitive resistance in non-host species and genetic analysis of this resistance in bean. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6743–6747. doi: 10.1073/pnas.85.18.6743. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES