Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Aug;5(8):973–982. doi: 10.1105/tpc.5.8.973

Alanine scanning mutagenesis of a plant virus movement protein identifies three functional domains.

D Giesman-Cookmeyer 1, S A Lommel 1
PMCID: PMC160332  PMID: 8400873

Abstract

Alanine scanning mutagenesis was performed on the red clover necrotic mosaic virus (RCNMV) movement protein (MP), and 12 mutants were assayed in vitro for RNA binding characteristics and in vivo for their ability to potentiate RCNMV cell-to-cell movement. The mutant phenotypes that were identified in vitro and in vivo suggest both that cooperative RNA binding is not necessary for cell-to-cell movement in vivo and that only a fraction of the wild-type RNA binding may be required. The MP mutants defined at least three distinct functional regions in the MP: an RNA binding domain, a cooperative RNA binding domain, and a third domain that is necessary for cell-to-cell movement in vivo. This third domain may be required for targeting the MP to cell walls and plasmodesmata, interacting with host proteins, folding, or possibly binding RNA into a functional ribonucleoprotein complex capable of cell-to-cell movement.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atabekov J. G., Taliansky M. E. Expression of a plant virus-coded transport function by different viral genomes. Adv Virus Res. 1990;38:201–248. doi: 10.1016/s0065-3527(08)60863-5. [DOI] [PubMed] [Google Scholar]
  2. Berna A., Gafny R., Wolf S., Lucas W. J., Holt C. A., Beachy R. N. The TMV movement protein: role of the C-terminal 73 amino acids in subcellular localization and function. Virology. 1991 Jun;182(2):682–689. doi: 10.1016/0042-6822(91)90609-f. [DOI] [PubMed] [Google Scholar]
  3. Citovsky V., Knorr D., Schuster G., Zambryski P. The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell. 1990 Feb 23;60(4):637–647. doi: 10.1016/0092-8674(90)90667-4. [DOI] [PubMed] [Google Scholar]
  4. Citovsky V., Wong M. L., Shaw A. L., Prasad B. V., Zambryski P. Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell. 1992 Apr;4(4):397–411. doi: 10.1105/tpc.4.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cunningham B. C., Wells J. A. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science. 1989 Jun 2;244(4908):1081–1085. doi: 10.1126/science.2471267. [DOI] [PubMed] [Google Scholar]
  6. Deom C. M., Lapidot M., Beachy R. N. Plant virus movement proteins. Cell. 1992 Apr 17;69(2):221–224. doi: 10.1016/0092-8674(92)90403-y. [DOI] [PubMed] [Google Scholar]
  7. Deom C. M., Schubert K. R., Wolf S., Holt C. A., Lucas W. J., Beachy R. N. Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc Natl Acad Sci U S A. 1990 May;87(9):3284–3288. doi: 10.1073/pnas.87.9.3284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Emini E. A., Hughes J. V., Perlow D. S., Boger J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol. 1985 Sep;55(3):836–839. doi: 10.1128/jvi.55.3.836-839.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gafny R., Lapidot M., Berna A., Holt C. A., Deom C. M., Beachy R. N. Effects of terminal deletion mutations on function of the movement protein of tobacco mosaic virus. Virology. 1992 Apr;187(2):499–507. doi: 10.1016/0042-6822(92)90452-u. [DOI] [PubMed] [Google Scholar]
  10. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  11. Lommel S. A., Weston-Fina M., Xiong Z., Lomonossoff G. P. The nucleotide sequence and gene organization of red clover necrotic mosaic virus RNA-2. Nucleic Acids Res. 1988 Sep 12;16(17):8587–8602. doi: 10.1093/nar/16.17.8587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Melcher U. Similarities between putative transport proteins of plant viruses. J Gen Virol. 1990 May;71(Pt 5):1009–1018. doi: 10.1099/0022-1317-71-5-1009. [DOI] [PubMed] [Google Scholar]
  13. Osman T. A., Hayes R. J., Buck K. W. Cooperative binding of the red clover necrotic mosaic virus movement protein to single-stranded nucleic acids. J Gen Virol. 1992 Feb;73(Pt 2):223–227. doi: 10.1099/0022-1317-73-2-223. [DOI] [PubMed] [Google Scholar]
  14. Osman T. A., Ingles P. J., Miller S. J., Buck K. W. A spontaneous red clover necrotic mosaic virus mutant with a truncated movement protein. J Gen Virol. 1991 Aug;72(Pt 8):1793–1800. doi: 10.1099/0022-1317-72-8-1793. [DOI] [PubMed] [Google Scholar]
  15. Osman T. A., Miller S. J., Marriott A. C., Buck K. W. Nucleotide sequence of RNA 2 of a Czechoslovakian isolate of red clover necrotic mosaic virus. J Gen Virol. 1991 Jan;72(Pt 1):213–216. doi: 10.1099/0022-1317-72-1-213. [DOI] [PubMed] [Google Scholar]
  16. Rosenberg A. H., Lade B. N., Chui D. S., Lin S. W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  17. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  18. Wolf S., Deom C. M., Beachy R. N., Lucas W. J. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science. 1989 Oct 20;246(4928):377–379. doi: 10.1126/science.246.4928.377. [DOI] [PubMed] [Google Scholar]
  19. Xiong Z. G., Lommel S. A. Red clover necrotic mosaic virus infectious transcripts synthesized in vitro. Virology. 1991 May;182(1):388–392. doi: 10.1016/0042-6822(91)90687-7. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES