Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Sep;5(9):1125–1138. doi: 10.1105/tpc.5.9.1125

Jordan, an active Volvox transposable element similar to higher plant transposons.

S M Miller 1, R Schmitt 1, D L Kirk 1
PMCID: PMC160346  PMID: 8400878

Abstract

We have isolated a 1595-bp transposable element from the multicellular green alga Volvox carteri following its insertion into the nitrate reductase (nitA) locus. This element, which we have named Jordan, has short (12-bp) terminal inverted repeats and creates a 3-bp target site duplication, like some higher plant transposons of the classic type. Contained within the first 200 bp of one end of the element are 55-bp inverted repeats, one of which begins with the terminal inverted repeat. Revertants of the transposon insertion into the nitA locus were obtained at a rate of approximately 10(-4) per Volvox embryo per generation. In each revertant examined, all transposon sequences were completely excised, but footprints containing both sets of duplicated bases, in addition to three to nine extra bases, were left behind. Jordan contains no significant open reading frames and so appears to be nonautonomous. DNA gel blot analysis indicates that Jordan is a member of a large family of homologous elements in the Volvox genome. We have isolated and characterized several of these homologs and found that they contain terminal very similar to those of Jordan. Efforts to utilize Jordan and its homologs as tools to tag and clone developmentally interesting genes of Volvox are discussed.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams C. R., Stamer K. A., Miller J. K., McNally J. G., Kirk M. M., Kirk D. L. Patterns of organellar and nuclear inheritance among progeny of two geographically isolated strains of Volvox carteri. Curr Genet. 1990 Aug;18(2):141–153. doi: 10.1007/BF00312602. [DOI] [PubMed] [Google Scholar]
  2. Aguilar M. R., Prieto R., Cárdenas J., Fernández E. nit 7: A New Locus for Molybdopterin Cofactor Biosynthesis in the Green Alga Chlamydomonas reinhardtii. Plant Physiol. 1992 Jan;98(1):395–398. doi: 10.1104/pp.98.1.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker B., Schell J., Lörz H., Fedoroff N. Transposition of the maize controlling element "Activator" in tobacco. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4844–4848. doi: 10.1073/pnas.83.13.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonas U., Sommer H., Saedler H. The 17-kb Tam1 element of Antirrhinum majus induces a 3-bp duplication upon integration into the chalcone synthase gene. EMBO J. 1984 May;3(5):1015–1019. doi: 10.1002/j.1460-2075.1984.tb01921.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daboussi M. J., Langin T., Brygoo Y. Fot1, a new family of fungal transposable elements. Mol Gen Genet. 1992 Mar;232(1):12–16. doi: 10.1007/BF00299131. [DOI] [PubMed] [Google Scholar]
  6. Fedoroff N. V., Furtek D. B., Nelson O. E. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci U S A. 1984 Jun;81(12):3825–3829. doi: 10.1073/pnas.81.12.3825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ferris P. J. Characterization of a Chlamydomonas transposon, Gulliver, resembling those in higher plants. Genetics. 1989 Jun;122(2):363–377. doi: 10.1093/genetics/122.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fincham J. R., Sastry G. R. Controlling elements in maize. Annu Rev Genet. 1974;8:15–50. doi: 10.1146/annurev.ge.08.120174.000311. [DOI] [PubMed] [Google Scholar]
  9. Frey M., Tavantzis S. M., Saedler H. The maize En-1/Spm element transposes in potato. Mol Gen Genet. 1989 May;217(1):172–177. doi: 10.1007/BF00330958. [DOI] [PubMed] [Google Scholar]
  10. Gierl A., Lütticke S., Saedler H. TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J. 1988 Dec 20;7(13):4045–4053. doi: 10.1002/j.1460-2075.1988.tb03298.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gierl A., Saedler H. Plant-transposable elements and gene tagging. Plant Mol Biol. 1992 May;19(1):39–49. doi: 10.1007/BF00015605. [DOI] [PubMed] [Google Scholar]
  12. Grandbastien M. A., Spielmann A., Caboche M. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature. 1989 Jan 26;337(6205):376–380. doi: 10.1038/337376a0. [DOI] [PubMed] [Google Scholar]
  13. Gruber H., Goetinck S. D., Kirk D. L., Schmitt R. The nitrate reductase-encoding gene of Volvox carteri: map location, sequence and induction kinetics. Gene. 1992 Oct 12;120(1):75–83. doi: 10.1016/0378-1119(92)90011-d. [DOI] [PubMed] [Google Scholar]
  14. Haring M. A., Gao J., Volbeda T., Rommens C. M., Nijkamp H. J., Hille J. A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants. Plant Mol Biol. 1989 Aug;13(2):189–201. doi: 10.1007/BF00016137. [DOI] [PubMed] [Google Scholar]
  15. Harper J. F., Huson K. S., Kirk D. L. Use of repetitive sequences to identify DNA polymorphisms linked to regA, a developmentally important locus in Volvox. Genes Dev. 1987 Aug;1(6):573–584. doi: 10.1101/gad.1.6.573. [DOI] [PubMed] [Google Scholar]
  16. Harper J. F., Mages W. Organization and structure of Volvox beta-tubulin genes. Mol Gen Genet. 1988 Aug;213(2-3):315–324. doi: 10.1007/BF00339597. [DOI] [PubMed] [Google Scholar]
  17. Holmes D. S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. doi: 10.1016/0003-2697(81)90473-5. [DOI] [PubMed] [Google Scholar]
  18. Huskey R. J., Griffin B. E. Genetic control of somatic cell differentiation in Volvox analysis of somatic regenerator mutants. Dev Biol. 1979 Oct;72(2):226–235. doi: 10.1016/0012-1606(79)90113-1. [DOI] [PubMed] [Google Scholar]
  19. Kirk D. L., Kaufman M. R., Keeling R. M., Stamer K. A. Genetic and cytological control of the asymmetric divisions that pattern the Volvox embryo. Dev Suppl. 1991;1:67–82. [PubMed] [Google Scholar]
  20. Kirk D. L., Kirk M. M. Heat shock elicits production of sexual inducer in Volvox. Science. 1986 Jan 3;231(4733):51–54. doi: 10.1126/science.3941891. [DOI] [PubMed] [Google Scholar]
  21. Kirk D. L., Kirk M. M. Protein synthetic patterns during the asexual life cycle of Volvox carteri. Dev Biol. 1983 Apr;96(2):493–506. doi: 10.1016/0012-1606(83)90186-0. [DOI] [PubMed] [Google Scholar]
  22. Kirk D. L. The ontogeny and phylogeny of cellular differentiation in Volvox. Trends Genet. 1988 Feb;4(2):32–36. doi: 10.1016/0168-9525(88)90063-7. [DOI] [PubMed] [Google Scholar]
  23. Kunze R., Starlinger P. The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J. 1989 Nov;8(11):3177–3185. doi: 10.1002/j.1460-2075.1989.tb08476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lindauer A., Fraser D., Brüderlein M., Schmitt R. Reverse transcriptase families and a copia-like retrotransposon, Osser, in the green alga Volvox carteri. FEBS Lett. 1993 Mar 22;319(3):261–266. doi: 10.1016/0014-5793(93)80559-d. [DOI] [PubMed] [Google Scholar]
  25. Martin C., Carpenter R., Sommer H., Saedler H., Coen E. S. Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging. EMBO J. 1985 Jul;4(7):1625–1630. doi: 10.1002/j.1460-2075.1985.tb03829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McCLINTOCK B. Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol. 1951;16:13–47. doi: 10.1101/sqb.1951.016.01.004. [DOI] [PubMed] [Google Scholar]
  27. Moerman D. G., Benian G. M., Waterston R. H. Molecular cloning of the muscle gene unc-22 in Caenorhabditis elegans by Tc1 transposon tagging. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2579–2583. doi: 10.1073/pnas.83.8.2579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nacken W. K., Piotrowiak R., Saedler H., Sommer H. The transposable element Tam1 from Antirrhinum majus shows structural homology to the maize transposon En/Spm and has no sequence specificity of insertion. Mol Gen Genet. 1991 Aug;228(1-2):201–208. doi: 10.1007/BF00282466. [DOI] [PubMed] [Google Scholar]
  29. Pereira A., Schwarz-Sommer Z., Gierl A., Bertram I., Peterson P. A., Saedler H. Genetic and molecular analysis of the Enhancer (En) transposable element system of Zea mays. EMBO J. 1985 Jan;4(1):17–23. doi: 10.1002/j.1460-2075.1985.tb02311.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Saedler H., Nevers P. Transposition in plants: a molecular model. EMBO J. 1985 Mar;4(3):585–590. doi: 10.1002/j.1460-2075.1985.tb03670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schiefelbein J. W., Raboy V., Kim H. Y., Nelson O. E. Molecular characterization of suppressor-mutator (Spm)-induced mutations at the bronze-1 locus in maize: the bz-m13 alleles. Basic Life Sci. 1988;47:261–278. doi: 10.1007/978-1-4684-5550-2_19. [DOI] [PubMed] [Google Scholar]
  32. Schmitt R., Fabry S., Kirk D. L. In search of molecular origins of cellular differentiation in Volvox and its relatives. Int Rev Cytol. 1992;139:189–265. doi: 10.1016/s0074-7696(08)61413-8. [DOI] [PubMed] [Google Scholar]
  33. Schwarz-Sommer Z., Gierl A., Cuypers H., Peterson P. A., Saedler H. Plant transposable elements generate the DNA sequence diversity needed in evolution. EMBO J. 1985 Mar;4(3):591–597. doi: 10.1002/j.1460-2075.1985.tb03671.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Truett M. A., Jones R. S., Potter S. S. Unusual structure of the FB family of transposable elements in Drosophila. Cell. 1981 Jun;24(3):753–763. doi: 10.1016/0092-8674(81)90101-x. [DOI] [PubMed] [Google Scholar]
  35. Tsay Y. F., Frank M. J., Page T., Dean C., Crawford N. M. Identification of a mobile endogenous transposon in Arabidopsis thaliana. Science. 1993 Apr 16;260(5106):342–344. doi: 10.1126/science.8385803. [DOI] [PubMed] [Google Scholar]
  36. Van Sluys M. A., Tempé J., Fedoroff N. Studies on the introduction and mobility of the maize Activator element in Arabidopsis thaliana and Daucus carota. EMBO J. 1987 Dec 20;6(13):3881–3889. doi: 10.1002/j.1460-2075.1987.tb02728.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Voytas D. F., Ausubel F. M. A copia-like transposable element family in Arabidopsis thaliana. Nature. 1988 Nov 17;336(6196):242–244. doi: 10.1038/336242a0. [DOI] [PubMed] [Google Scholar]
  38. Williams J. A., Pappu S. S., Bell J. B. Molecular analysis of hybrid dysgenesis-induced derivatives of a P-element allele at the vg locus. Mol Cell Biol. 1988 Apr;8(4):1489–1497. doi: 10.1128/mcb.8.4.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yuan J. Y., Finney M., Tsung N., Horvitz H. R. Tc4, a Caenorhabditis elegans transposable element with an unusual fold-back structure. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3334–3338. doi: 10.1073/pnas.88.8.3334. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES