Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Oct;5(10):1285–1290. doi: 10.1105/tpc.5.10.1285

Thoughts on Cytoplasmic Male Sterility in cms-T Maize.

CS Levings 3rd 1
PMCID: PMC160361  PMID: 12271028

Full Text

The Full Text of this article is available as a PDF (650.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedinger P. The remarkable biology of pollen. Plant Cell. 1992 Aug;4(8):879–887. doi: 10.1105/tpc.4.8.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braun C. J., Siedow J. N., Williams M. E., Levings C. S., 3rd Mutations in the maize mitochondrial T-urf13 gene eliminate sensitivity to a fungal pathotoxin. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4435–4439. doi: 10.1073/pnas.86.12.4435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Connett M. B., Hanson M. R. Differential Mitochondrial Electron Transport through the Cyanide-Sensitive and Cyanide-Insensitive Pathways in Isonuclear Lines of Cytoplasmic Male Sterile, Male Fertile, and Restored Petunia. Plant Physiol. 1990 Aug;93(4):1634–1640. doi: 10.1104/pp.93.4.1634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dewey R. E., Levings C. S., 3rd, Timothy D. H. Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell. 1986 Feb 14;44(3):439–449. doi: 10.1016/0092-8674(86)90465-4. [DOI] [PubMed] [Google Scholar]
  5. Dewey R. E., Siedow J. N., Timothy D. H., Levings C. S., 3rd A 13-kilodalton maize mitochondrial protein in E. coli confers sensitivity to Bipolaris maydis toxin. Science. 1988 Jan 15;239(4837):293–295. doi: 10.1126/science.3276005. [DOI] [PubMed] [Google Scholar]
  6. Dewey R. E., Timothy D. H., Levings C. S. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5374–5378. doi: 10.1073/pnas.84.15.5374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fauron C. M., Havlik M., Brettell R. I. The mitochondrial genome organization of a maize fertile cmsT revertant line is generated through recombination between two sets of repeats. Genetics. 1990 Feb;124(2):423–428. doi: 10.1093/genetics/124.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Folkerts O., Hanson M. R. Three copies of a single recombination repeat occur on the 443 kb master circle of the Petunia hybrida 3704 mitochondrial genome. Nucleic Acids Res. 1989 Sep 25;17(18):7345–7357. doi: 10.1093/nar/17.18.7345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forde B. G., Oliver R. J., Leaver C. J. Variation in mitochondrial translation products associated with male-sterile cytoplasms in maize. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3841–3845. doi: 10.1073/pnas.75.8.3841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gengenbach B. G., Green C. E., Donovan C. M. Inheritance of selected pathotoxin resistance in maize plants regenerated from cell cultures. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5113–5117. doi: 10.1073/pnas.74.11.5113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glab N., Wise R. P., Pring D. R., Jacq C., Slonimski P. Expression in Saccharomyces cerevisiae of a gene associated with cytoplasmic male sterility from maize: respiratory dysfunction and uncoupling of yeast mitochondria. Mol Gen Genet. 1990 Aug;223(1):24–32. doi: 10.1007/BF00315793. [DOI] [PubMed] [Google Scholar]
  12. Hanson M. R. Plant mitochondrial mutations and male sterility. Annu Rev Genet. 1991;25:461–486. doi: 10.1146/annurev.ge.25.120191.002333. [DOI] [PubMed] [Google Scholar]
  13. Holden M. J., Sze H. Dissipation of the Membrane Potential in Susceptible Corn Mitochondria by the Toxin of Helminthosporium maydis, Race T, and Toxin Analogs. Plant Physiol. 1987 Jul;84(3):670–676. doi: 10.1104/pp.84.3.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Huang J., Lee S. H., Lin C., Medici R., Hack E., Myers A. M. Expression in yeast of the T-urf13 protein from Texas male-sterile maize mitochondria confers sensitivity to methomyl and to Texas-cytoplasm-specific fungal toxins. EMBO J. 1990 Feb;9(2):339–347. doi: 10.1002/j.1460-2075.1990.tb08116.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Korth K. L., Kaspi C. I., Siedow J. N., Levings C. S., 3rd URF13, a maize mitochondrial pore-forming protein, is oligomeric and has a mixed orientation in Escherichia coli plasma membranes. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10865–10869. doi: 10.1073/pnas.88.23.10865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Korth K. L., Levings C. S., 3rd Baculovirus expression of the maize mitochondrial protein URF13 confers insecticidal activity in cell cultures and larvae. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3388–3392. doi: 10.1073/pnas.90.8.3388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levings C. S., 3rd The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility. Science. 1990 Nov 16;250(4983):942–947. doi: 10.1126/science.250.4983.942. [DOI] [PubMed] [Google Scholar]
  18. Newton K. J., Knudsen C., Gabay-Laughnan S., Laughnan J. R. An abnormal growth mutant in maize has a defective mitochondrial cytochrome oxidase gene. Plant Cell. 1990 Feb;2(2):107–113. doi: 10.1105/tpc.2.2.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nivison H. T., Hanson M. R. Identification of a mitochondrial protein associated with cytoplasmic male sterility in petunia. Plant Cell. 1989 Nov;1(11):1121–1130. doi: 10.1105/tpc.1.11.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pring D. R., Gengenbach B. G., Wise R. P. Recombination is associated with polymorphism of the mitochondrial genomes of maize and sorghum. Philos Trans R Soc Lond B Biol Sci. 1988 May 31;319(1193):187–198. doi: 10.1098/rstb.1988.0042. [DOI] [PubMed] [Google Scholar]
  21. Pring D. R., Levings C. S. Heterogeneity of Maize Cytoplasmic Genomes among Male-Sterile Cytoplasms. Genetics. 1978 May;89(1):121–136. doi: 10.1093/genetics/89.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rottmann W. H., Brears T., Hodge T. P., Lonsdale D. M. A mitochondrial gene is lost via homologous recombination during reversion of CMS T maize to fertility. EMBO J. 1987 Jun;6(6):1541–1546. doi: 10.1002/j.1460-2075.1987.tb02398.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wallace D. C. Mitochondrial DNA mutations and neuromuscular disease. Trends Genet. 1989 Jan;5(1):9–13. doi: 10.1016/0168-9525(89)90005-x. [DOI] [PubMed] [Google Scholar]
  24. Wallace D. C., Singh G., Lott M. T., Hodge J. A., Schurr T. G., Lezza A. M., Elsas L. J., 2nd, Nikoskelainen E. K. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science. 1988 Dec 9;242(4884):1427–1430. doi: 10.1126/science.3201231. [DOI] [PubMed] [Google Scholar]
  25. Wise R. P., Pring D. R., Gengenbach B. G. Mutation to male fertility and toxin insensitivity in Texas (T)-cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame. Proc Natl Acad Sci U S A. 1987 May;84(9):2858–2862. doi: 10.1073/pnas.84.9.2858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Young E. G., Hanson M. R. A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell. 1987 Jul 3;50(1):41–49. doi: 10.1016/0092-8674(87)90660-x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES