Abstract
The Sc3p hydrophobin of the basidiomycete Schizophyllum commune is a small hydrophobic protein (100 to 101 amino acids) containing eight cysteine residues. Large amounts of the protein are excreted into the culture medium as monomers, but in the walls of aerial hyphae, the protein is present as an SDS-insoluble complex. In this study, we show that the Sc3p hydrophobin spontaneously assembles into an SDS-insoluble protein membrane on the surface of gas bubbles or when dried down on a hydrophilic surface. Electron microscopy of the assembled hydrophobin shows a surface consisting of rodlets spaced 10 nm apart, which is similar to those rodlets seen on the surface of aerial hyphae. When the purified Sc3p hydrophobin assembles on a hydrophilic surface, a surface is exposed with high hydrophobicity, similar to that of aerial hyphae. The rodlet layer, assembled in vivo and in vitro, can be disassembled by dissolution in trifluoroacetic acid and, after removal of the acid, reassembled into a rodlet layer. We propose, therefore, that the hydrophobic rodlet layer on aerial hyphae arises by interfacial self-assembly of Sc3p hydrophobin monomers, involving noncovalent interactions only. Submerged hyphae merely excrete monomers because these hyphae are not exposed to a water-air interface. The generally observed rodlet layers on fungal spores may arise in a similar way.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beever R. E., Dempsey G. P. Function of rodlets on the surface of fungal spores. Nature. 1978 Apr 13;272(5654):608–610. doi: 10.1038/272608a0. [DOI] [PubMed] [Google Scholar]
- Bell-Pedersen D., Dunlap J. C., Loros J. J. The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev. 1992 Dec;6(12A):2382–2394. doi: 10.1101/gad.6.12a.2382. [DOI] [PubMed] [Google Scholar]
- Bolyard M. G., Sticklen M. B. Expression of a modified Dutch elm disease toxin in Escherichia coli. Mol Plant Microbe Interact. 1992 Nov-Dec;5(6):520–524. doi: 10.1094/mpmi-5-520. [DOI] [PubMed] [Google Scholar]
- Carpenter C. E., Mueller R. J., Kazmierczak P., Zhang L., Villalon D. K., Van Alfen N. K. Effect of a virus on accumulation of a tissue-specific cell-surface protein of the fungus Cryphonectria (Endothia) parasitica. Mol Plant Microbe Interact. 1992 Jan-Feb;5(1):55–61. doi: 10.1094/mpmi-5-055. [DOI] [PubMed] [Google Scholar]
- Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem. 1979 Sep 15;98(1):132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
- Dons J. J., de Vries O. M., Wessels J. G. Characterization of the genome of the basidiomycete Schizophyllum commune. Biochim Biophys Acta. 1979 Jun 20;563(1):100–112. doi: 10.1016/0005-2787(79)90011-x. [DOI] [PubMed] [Google Scholar]
- Hashimoto T., Wu-Yuan C. D., Blumenthal H. J. Isolation and characterization of the rodlet layer of Trichophyton mentagrophytes microconidial wall. J Bacteriol. 1976 Sep;127(3):1543–1549. doi: 10.1128/jb.127.3.1543-1549.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hess W. M., Stocks D. L. Surface characteristics of Aspergillus conidia. Mycologia. 1969 May-Jun;61(3):560–571. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lauter F. R., Russo V. E., Yanofsky C. Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Genes Dev. 1992 Dec;6(12A):2373–2381. doi: 10.1101/gad.6.12a.2373. [DOI] [PubMed] [Google Scholar]
- Sassen M. M., Remsen C. C., Hess W. M. Fine structure of Penicillium megasporum conidiospores. Protoplasma. 1967;64(1):75–88. doi: 10.1007/BF01257383. [DOI] [PubMed] [Google Scholar]
- St Leger R. J., Staples R. C., Roberts D. W. Cloning and regulatory analysis of starvation-stress gene, ssgA, encoding a hydrophobin-like protein from the entomopathogenic fungus, Metarhizium anisopliae. Gene. 1992 Oct 12;120(1):119–124. doi: 10.1016/0378-1119(92)90019-l. [DOI] [PubMed] [Google Scholar]
- Stringer M. A., Dean R. A., Sewall T. C., Timberlake W. E. Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev. 1991 Jul;5(7):1161–1171. doi: 10.1101/gad.5.7.1161. [DOI] [PubMed] [Google Scholar]
- Talbot N. J., Ebbole D. J., Hamer J. E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell. 1993 Nov;5(11):1575–1590. doi: 10.1105/tpc.5.11.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wessels J. G., Kreger D. R., Marchant R., Regensburg B. A., De Vries O. M. Chemical and morphological characterization of the hyphal wall surface of the basidiomycete Schizophyllum commune. Biochim Biophys Acta. 1972 Jul 19;273(2):346–358. doi: 10.1016/0304-4165(72)90226-7. [DOI] [PubMed] [Google Scholar]
- Wessels J. G., de Vries O. M., Asgeirsdóttir S. A., Springer J. The thn mutation of Schizophyllum commune, which suppresses formation of aerial hyphae, affects expression of the Sc3 hydrophobin gene. J Gen Microbiol. 1991 Oct;137(10):2439–2445. doi: 10.1099/00221287-137-10-2439. [DOI] [PubMed] [Google Scholar]
- Wessels JGH., De Vries OMH., Asgeirsdottir S. A., Schuren FHJ. Hydrophobin Genes Involved in Formation of Aerial Hyphae and Fruit Bodies in Schizophyllum. Plant Cell. 1991 Aug;3(8):793–799. doi: 10.1105/tpc.3.8.793. [DOI] [PMC free article] [PubMed] [Google Scholar]