Abstract
The major transport form of assimilates in most plants is sucrose. Translocation from the mesophyll into the phloem for long-distance transport is assumed to be carrier mediated in many species. A sucrose transporter cDNA was isolated from potato by complementation of a yeast strain that is unable to grow on sucrose because of the absence of an endogenous sucrose uptake system and the lack of a secreted invertase. The deduced amino acid sequence of the potato sucrose transporter gene StSUT1 is highly hydrophobic and is 68% identical to the spinach sucrose transporter SoSUT1 (pS21). In yeast, the sensitivity of sucrose transport to protonophores and to an increase in pH is consistent with an active proton cotransport mechanism. Substrate specificity and inhibition by protein modifiers are similar to results obtained for sucrose transport into protoplasts and plasma membrane vesicles and for the spinach transporter, with the exception of a reduction in maltose affinity. RNA gel blot analysis shows that the StSUT1 gene is highly expressed in mature leaves, whereas stem and sink tissues, such as developing leaves, show only low expression. RNA in situ hybridization studies show that the transporter gene is expressed specifically in the phloem. Both the properties and the expression pattern are consistent with a function of the sucrose transporter protein in phloem loading.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen C., Reverchon S., Robert-Baudouy J. Nucleotide sequence of the Erwinia chrysanthemi gene encoding 2-keto-3-deoxygluconate permease. Gene. 1989 Nov 30;83(2):233–241. doi: 10.1016/0378-1119(89)90109-1. [DOI] [PubMed] [Google Scholar]
- Anderson J. A., Huprikar S. S., Kochian L. V., Lucas W. J., Gaber R. F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3736–3740. doi: 10.1073/pnas.89.9.3736. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckley M. F., Goding J. W. Preparation of bacteriophage lambda DNA using the TL-100 ultracentrifuge. Anal Biochem. 1988 Nov 15;175(1):281–283. doi: 10.1016/0003-2697(88)90389-2. [DOI] [PubMed] [Google Scholar]
- DeWitt N. D., Harper J. F., Sussman M. R. Evidence for a plasma membrane proton pump in phloem cells of higher plants. Plant J. 1991 Jul;1(1):121–128. doi: 10.1111/j.1365-313x.1991.00121.x. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dohmen R. J., Strasser A. W., Höner C. B., Hollenberg C. P. An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast. 1991 Oct;7(7):691–692. doi: 10.1002/yea.320070704. [DOI] [PubMed] [Google Scholar]
- Frommer W. B., Hummel S., Riesmeier J. W. Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5944–5948. doi: 10.1073/pnas.90.13.5944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gifford R. M., Thorne J. H., Hitz W. D., Giaquinta R. T. Crop productivity and photoassimilate partitioning. Science. 1984 Aug 24;225(4664):801–808. doi: 10.1126/science.225.4664.801. [DOI] [PubMed] [Google Scholar]
- Gozalbo D., Hohmann S. Nonsense suppressors partially revert the decrease of the mRNA level of a nonsense mutant allele in yeast. Curr Genet. 1990 Jan;17(1):77–79. doi: 10.1007/BF00313252. [DOI] [PubMed] [Google Scholar]
- Hecht R., Slone J. H., Buckhout T. J., Hitz W. D., Vanderwoude W. J. Substrate Specificity of the H-Sucrose Symporter on the Plasma Membrane of Sugar Beets (Beta vulgaris L.) : Transport of Phenylglucopyranosides. Plant Physiol. 1992 Jun;99(2):439–444. doi: 10.1104/pp.99.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson P. J. Proton-linked sugar transport systems in bacteria. J Bioenerg Biomembr. 1990 Aug;22(4):525–569. doi: 10.1007/BF00762961. [DOI] [PubMed] [Google Scholar]
- Higgins C. F., Hyde S. C., Mimmack M. M., Gileadi U., Gill D. R., Gallagher M. P. Binding protein-dependent transport systems. J Bioenerg Biomembr. 1990 Aug;22(4):571–592. doi: 10.1007/BF00762962. [DOI] [PubMed] [Google Scholar]
- Hitz W. D., Card P. J., Ripp K. G. Substrate recognition by a sucrose transporting protein. J Biol Chem. 1986 Sep 15;261(26):11986–11991. [PubMed] [Google Scholar]
- King S. C., Wilson T. H. Identification of valine 177 as a mutation altering specificity for transport of sugars by the Escherichia coli lactose carrier. Enhanced specificity for sucrose and maltose. J Biol Chem. 1990 Jun 15;265(17):9638–9644. [PubMed] [Google Scholar]
- Lemoine R., Gallet O., Gaillard C., Frommer W., Delrot S. Plasma membrane vesicles from source and sink leaves : changes in solute transport and polypeptide composition. Plant Physiol. 1992 Nov;100(3):1150–1156. doi: 10.1104/pp.100.3.1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Z. S., Gallet O., Gaillard C., Lemoine R., Delrot S. The sucrose carrier of the plant plasmalemma. III. Partial purification and reconstitution of active sucrose transport in liposomes. Biochim Biophys Acta. 1992 Jan 31;1103(2):259–267. doi: 10.1016/0005-2736(92)90095-4. [DOI] [PubMed] [Google Scholar]
- Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
- Markgraf M., Bocklage H., Müller-Hill B. A change of threonine 266 to isoleucine in the lac permease of Escherichia coli diminishes the transport of lactose and increases the transport of maltose. Mol Gen Genet. 1985;198(3):473–475. doi: 10.1007/BF00332941. [DOI] [PubMed] [Google Scholar]
- Martin T., Frommer W. B., Salanoubat M., Willmitzer L. Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J. 1993 Aug;4(2):367–377. doi: 10.1046/j.1365-313x.1993.04020367.x. [DOI] [PubMed] [Google Scholar]
- Maynard J. W., Lucas W. J. Sucrose and Glucose Uptake into Beta vulgaris Leaf Tissues : A Case for General (Apoplastic) Retrieval Systems. Plant Physiol. 1982 Nov;70(5):1436–1443. doi: 10.1104/pp.70.5.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riesmeier J. W., Willmitzer L., Frommer W. B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992 Dec;11(13):4705–4713. doi: 10.1002/j.1460-2075.1992.tb05575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandermann H., Jr beta-D-Galactoside transport in Escherichia coli: substrate recognition. Eur J Biochem. 1977 Nov 1;80(2):507–515. doi: 10.1111/j.1432-1033.1977.tb11906.x. [DOI] [PubMed] [Google Scholar]
- Sauer N., Friedländer K., Gräml-Wicke U. Primary structure, genomic organization and heterologous expression of a glucose transporter from Arabidopsis thaliana. EMBO J. 1990 Oct;9(10):3045–3050. doi: 10.1002/j.1460-2075.1990.tb07500.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulz B., Frommer W. B., Flügge U. I., Hummel S., Fischer K., Willmitzer L. Expression of the triose phosphate translocator gene from potato is light dependent and restricted to green tissues. Mol Gen Genet. 1993 Apr;238(3):357–361. doi: 10.1007/BF00291994. [DOI] [PubMed] [Google Scholar]
- Sonnewald U., Brauer M., von Schaewen A., Stitt M., Willmitzer L. Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions. Plant J. 1991 Jul;1(1):95–106. doi: 10.1111/j.1365-313x.1991.00095.x. [DOI] [PubMed] [Google Scholar]