Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Nov;5(11):1627–1638. doi: 10.1105/tpc.5.11.1627

Expression of the two maize TATA binding protein genes and function of the encoded TBP proteins by complementation in yeast.

J M Vogel 1, B Roth 1, M Cigan 1, M Freeling 1
PMCID: PMC160391  PMID: 8312743

Abstract

A single gene encodes the TATA binding protein (TBP) in yeasts and animals. Although two TBP-encoding genes (Tbp) previously were isolated from both Arabidopsis and maize, the expression and in vivo function of the encoded plant TBPs were not investigated. Here, we report that the two highly conserved maize Tbp genes are unlinked and reside within larger, ancestrally duplicated segments in the genome. We find quantitative differences in Tbp1 versus Tbp2 transcript accumulation in some maize tissues. These nonidentical expression patterns may indicate differences in the tissue-specific regulation of these genes, which might allow the two encoded maize TBP isoforms to perform nonoverlapping functions in the plant. In addition, we show that the maize TBP products, unlike animal TBPs, are functionally interchangeable with yeast TBP for conferring yeast cell viability. This is a conclusive demonstration of in vivo activity for a nonyeast TBP protein, and these complementation results point to particular amino acids in TBP that are likely to influence species-specific protein interactions.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ammerer G. Expression of genes in yeast using the ADCI promoter. Methods Enzymol. 1983;101:192–201. doi: 10.1016/0076-6879(83)01014-9. [DOI] [PubMed] [Google Scholar]
  2. Barkan A., Martienssen R. A. Inactivation of maize transposon Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mu1. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3502–3506. doi: 10.1073/pnas.88.8.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burr B., Burr F. A. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet. 1991 Feb;7(2):55–60. doi: 10.1016/0168-9525(91)90232-F. [DOI] [PubMed] [Google Scholar]
  4. Chen W., Struhl K. Saturation mutagenesis of a yeast his3 "TATA element": genetic evidence for a specific TATA-binding protein. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2691–2695. doi: 10.1073/pnas.85.8.2691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cormack B. P., Strubin M., Ponticelli A. S., Struhl K. Functional differences between yeast and human TFIID are localized to the highly conserved region. Cell. 1991 Apr 19;65(2):341–348. doi: 10.1016/0092-8674(91)90167-w. [DOI] [PubMed] [Google Scholar]
  6. Doebley J., Stec A. Genetic analysis of the morphological differences between maize and teosinte. Genetics. 1991 Sep;129(1):285–295. doi: 10.1093/genetics/129.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dynlacht B. D., Hoey T., Tjian R. Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell. 1991 Aug 9;66(3):563–576. doi: 10.1016/0092-8674(81)90019-2. [DOI] [PubMed] [Google Scholar]
  8. Eisenmann D. M., Arndt K. M., Ricupero S. L., Rooney J. W., Winston F. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 1992 Jul;6(7):1319–1331. doi: 10.1101/gad.6.7.1319. [DOI] [PubMed] [Google Scholar]
  9. Gasch A., Hoffmann A., Horikoshi M., Roeder R. G., Chua N. H. Arabidopsis thaliana contains two genes for TFIID. Nature. 1990 Jul 26;346(6282):390–394. doi: 10.1038/346390a0. [DOI] [PubMed] [Google Scholar]
  10. Green M. R. Gene regulation. Transcriptional transgressions. Nature. 1992 Jun 4;357(6377):364–365. doi: 10.1038/357364d0. [DOI] [PubMed] [Google Scholar]
  11. Haass M. M., Feix G. Two different cDNAs encoding TFIID proteins of maize. FEBS Lett. 1992 Apr 27;301(3):294–298. doi: 10.1016/0014-5793(92)80260-n. [DOI] [PubMed] [Google Scholar]
  12. Hoey T., Dynlacht B. D., Peterson M. G., Pugh B. F., Tjian R. Isolation and characterization of the Drosophila gene encoding the TATA box binding protein, TFIID. Cell. 1990 Jun 29;61(7):1179–1186. doi: 10.1016/0092-8674(90)90682-5. [DOI] [PubMed] [Google Scholar]
  13. Holdsworth M. J., Grierson C., Schuch W., Bevan M. DNA-binding properties of cloned TATA-binding protein from potato tubers. Plant Mol Biol. 1992 Jun;19(3):455–464. doi: 10.1007/BF00023393. [DOI] [PubMed] [Google Scholar]
  14. Horikoshi M., Wang C. K., Fujii H., Cromlish J. A., Weil P. A., Roeder R. G. Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box. Nature. 1989 Sep 28;341(6240):299–303. doi: 10.1038/341299a0. [DOI] [PubMed] [Google Scholar]
  15. Horikoshi M., Yamamoto T., Ohkuma Y., Weil P. A., Roeder R. G. Analysis of structure-function relationships of yeast TATA box binding factor TFIID. Cell. 1990 Jun 29;61(7):1171–1178. doi: 10.1016/0092-8674(90)90681-4. [DOI] [PubMed] [Google Scholar]
  16. Jazwinski S. M. Preparation of extracts from yeast. Methods Enzymol. 1990;182:154–174. doi: 10.1016/0076-6879(90)82015-t. [DOI] [PubMed] [Google Scholar]
  17. Kelleher R. J., 3rd, Flanagan P. M., Chasman D. I., Ponticelli A. S., Struhl K., Kornberg R. D. Yeast and human TFIIDs are interchangeable for the response to acidic transcriptional activators in vitro. Genes Dev. 1992 Feb;6(2):296–303. doi: 10.1101/gad.6.2.296. [DOI] [PubMed] [Google Scholar]
  18. Kloeckener-Gruissem B., Vogel J. M., Freeling M. The TATA box promoter region of maize Adh1 affects its organ-specific expression. EMBO J. 1992 Jan;11(1):157–166. doi: 10.1002/j.1460-2075.1992.tb05038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nikolov D. B., Hu S. H., Lin J., Gasch A., Hoffmann A., Horikoshi M., Chua N. H., Roeder R. G., Burley S. K. Crystal structure of TFIID TATA-box binding protein. Nature. 1992 Nov 5;360(6399):40–46. doi: 10.1038/360040a0. [DOI] [PubMed] [Google Scholar]
  20. Peterson M. G., Tanese N., Pugh B. F., Tjian R. Functional domains and upstream activation properties of cloned human TATA binding protein. Science. 1990 Jun 29;248(4963):1625–1630. doi: 10.1126/science.2363050. [DOI] [PubMed] [Google Scholar]
  21. Poon D., Schroeder S., Wang C. K., Yamamoto T., Horikoshi M., Roeder R. G., Weil P. A. The conserved carboxy-terminal domain of Saccharomyces cerevisiae TFIID is sufficient to support normal cell growth. Mol Cell Biol. 1991 Oct;11(10):4809–4821. doi: 10.1128/mcb.11.10.4809. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES