Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Nov;5(11):1639–1650. doi: 10.1105/tpc.5.11.1639

Development and Pollination Regulated Accumulation and Glycosylation of a Stylar Transmitting Tissue-Specific Proline-Rich Protein.

H Wang 1, HM Wu 1, AY Cheung 1
PMCID: PMC160392  PMID: 12271049

Abstract

The extracellular matrix of stylar transmitting tissues of many angiosperms is enriched in secretory materials that are believed to be important for interactions with pollen tubes. We have previously characterized two related cDNAs (TTS-1 and TTS-2) for stylar transmitting tissue-specific proline-rich proteins (TTS proteins) from Nicotiana tabacum. We show here that TTS proteins are highly glycosylated proteins with apparent molecular masses ranging between 50 and 100 kD. Results from chemical and enzymatic deglycosylation suggest that TTS proteins have N-linked glycosyl groups, and the extensive glycosylation most probably has resulted from modifications at the proline residues. TTS proteins are localized to the intercellular regions between neighboring transmitting tissue cells, the space in which pollen tubes elongate as they migrate from the stigma toward the ovary. TTS mRNA and protein levels are regulated during pistil development and by pollination. The levels of TTS mRNAs and proteins increase with flower development and reach the maximal levels as flowers approach anthesis. These maximal levels are maintained in the styles for at least 3 to 4 days after pollination, during which time pollen tubes elongate and reach the ovary. Spatially, TTS mRNAs and proteins accumulate first in the stigmatic end of young styles, and their levels progressively increase toward the basal end as pistils mature. Pollination stimulates the levels of TTS mRNAs and proteins in hand-pollinated young styles, which normally accumulate relatively low levels of these TTS gene products. Pollination also qualitatively affects TTS mRNAs and proteins. In pollinated styles, TTS mRNAs are shorter than those in unpollinated styles and underglycosylated TTS protein species begin to accumulate. The elaborate regulatory mechanisms governing TTS mRNAs and proteins during development and by pollination strongly suggest that these proteins may play a functional role in the process of pollination.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin T. C., Coen E. S., Dickinson H. G. The ptl1 gene expressed in the transmitting tissue of Antirrhinum encodes an extensin-like protein. Plant J. 1992 Sep;2(5):733–739. doi: 10.1046/j.1365-313x.1992.t01-14-00999.x. [DOI] [PubMed] [Google Scholar]
  2. Bell E. J., Corrin B., Davies M., Farrer-Brown G., Olsen E. Symposium on cardiac pathology. Br Heart J. 1976 Feb;38(2):200–200. doi: 10.1136/hrt.38.2.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen C. G., Cornish E. C., Clarke A. E. Specific expression of an extensin-like gene in the style of Nicotiana alata. Plant Cell. 1992 Sep;4(9):1053–1062. doi: 10.1105/tpc.4.9.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen C. G., Mau S. L., Clarke A. E. Nucleotide sequence and style-specific expression of a novel proline-rich protein gene from Nicotiana alata. Plant Mol Biol. 1993 Jan;21(2):391–395. doi: 10.1007/BF00019955. [DOI] [PubMed] [Google Scholar]
  5. Cheung A. Y., May B., Kawata E. E., Gu Q., Wu H. M. Characterization of cDNAs for stylar transmitting tissue-specific proline-rich proteins in tobacco. Plant J. 1993 Jan;3(1):151–160. [PubMed] [Google Scholar]
  6. Dzelzkalns V. A., Nasrallah J. B., Nasrallah M. E. Cell-cell communication in plants: self-incompatibility in flower development. Dev Biol. 1992 Sep;153(1):70–82. doi: 10.1016/0012-1606(92)90092-u. [DOI] [PubMed] [Google Scholar]
  7. Gasser C. S., Budelier K. A., Smith A. G., Shah D. M., Fraley R. T. Isolation of Tissue-Specific cDNAs from Tomato Pistils. Plant Cell. 1989 Jan;1(1):15–24. doi: 10.1105/tpc.1.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldman M. H., Pezzotti M., Seurinck J., Mariani C. Developmental expression of tobacco pistil-specific genes encoding novel extensin-like proteins. Plant Cell. 1992 Sep;4(9):1041–1051. doi: 10.1105/tpc.4.9.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haring V., Gray J. E., McClure B. A., Anderson M. A., Clarke A. E. Self-incompatibility: a self-recognition system in plants. Science. 1990 Nov 16;250(4983):937–941. doi: 10.1126/science.2237440. [DOI] [PubMed] [Google Scholar]
  10. Kawata E. E., Cheung A. Y. Molecular analysis of an aurea photosynthetic mutant (Su/Su) in tobacco: LHCP depletion leads to pleiotropic mutant phenotypes. EMBO J. 1990 Dec;9(12):4197–4203. doi: 10.1002/j.1460-2075.1990.tb07644.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell. 1990 Dec;2(12):1201–1224. doi: 10.1105/tpc.2.12.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Langdale J. A., Rothermel B. A., Nelson T. Cellular pattern of photosynthetic gene expression in developing maize leaves. Genes Dev. 1988 Jan;2(1):106–115. doi: 10.1101/gad.2.1.106. [DOI] [PubMed] [Google Scholar]
  14. Lord E. M., Sanders L. C. Roles for the extracellular matrix in plant development and pollination: a special case of cell movement in plants. Dev Biol. 1992 Sep;153(1):16–28. doi: 10.1016/0012-1606(92)90088-x. [DOI] [PubMed] [Google Scholar]
  15. McClure B. A., Du H., Liu Y. H., Clarke A. E. S-locus products in Nicotiana alata pistils are subject to organ-specific post-transcriptional processing but not post-translational processing. Plant Mol Biol. 1993 Apr;22(1):177–181. doi: 10.1007/BF00039008. [DOI] [PubMed] [Google Scholar]
  16. McCormick S. Molecular analysis of male gametogenesis in plants. Trends Genet. 1991 Sep;7(9):298–303. doi: 10.1016/0168-9525(91)90312-E. [DOI] [PubMed] [Google Scholar]
  17. Murfett J., Cornish E. C., Ebert P. R., Bonig I., McClure B. A., Clarke A. E. Expression of a Self-Incompatibility Glycoprotein (S2-Ribonuclease) from Nicotiana alata in Transgenic Nicotiana tabacum. Plant Cell. 1992 Sep;4(9):1063–1074. doi: 10.1105/tpc.4.9.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'Neill S. D., Nadeau J. A., Zhang X. S., Bui A. Q., Halevy A. H. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell. 1993 Apr;5(4):419–432. doi: 10.1105/tpc.5.4.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ori N., Sessa G., Lotan T., Himmelhoch S., Fluhr R. A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J. 1990 Nov;9(11):3429–3436. doi: 10.1002/j.1460-2075.1990.tb07550.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Showalter A. M. Structure and function of plant cell wall proteins. Plant Cell. 1993 Jan;5(1):9–23. doi: 10.1105/tpc.5.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tarentino A. L., Quinones G., Trumble A., Changchien L. M., Duceman B., Maley F., Plummer T. H., Jr Molecular cloning and amino acid sequence of peptide-N4-(N-acetyl-beta-D-glucosaminyl)asparagine amidase from flavobacterium meningosepticum. J Biol Chem. 1990 Apr 25;265(12):6961–6966. [PubMed] [Google Scholar]
  22. Zhang X. S., O'Neill S. D. Ovary and Gametophyte Development Are Coordinately Regulated by Auxin and Ethylene following Pollination. Plant Cell. 1993 Apr;5(4):403–418. doi: 10.1105/tpc.5.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Holst G. J., Varner J. E. Reinforced Polyproline II Conformation in a Hydroxyproline-Rich Cell Wall Glycoprotein from Carrot Root. Plant Physiol. 1984 Feb;74(2):247–251. doi: 10.1104/pp.74.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES