Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Nov;5(11):1651–1659. doi: 10.1105/tpc.5.11.1651

Molecular characterization of a vacuolar processing enzyme related to a putative cysteine proteinase of Schistosoma mansoni.

I Hara-Nishimura 1, Y Takeuchi 1, M Nishimura 1
PMCID: PMC160393  PMID: 8312744

Abstract

Proproteins of various vacuolar proteins are post-translationally processed into mature forms by the action of a unique vacuolar processing enzyme. If such a processing enzyme is transported to vacuoles together with proprotein substrates, the enzyme must be a latent form. Immunocytochemical localization of a vacuolar processing enzyme, a 37-kD cysteine proteinase, in the endosperm of maturing castor bean seeds places the enzyme in the vacuolar matrix, where a variety of proproteins is also present. To characterize a molecular structure of vacuolar processing enzyme, we isolated a cDNA for the enzyme. Deduced primary structure of a 55-kD precursor is 33% identical to a putative cysteine proteinase of the human parasite Schistosoma mansoni. The precursor is composed of a signal peptide, a 37-kD active processing enzyme domain, and a propeptide fragment. Although the precursor expressed in Escherichia coli has no vacuolar processing activity, a 36-kD immunopositive protein expressed in E. coli is active. These results suggest that the activation of the vacuolar processing enzyme requires proteolytic cleavage of a 14-kD C-terminal propeptide fragment of the precursor.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson A. H., Heath R. L., Simpson R. J., Clarke A. E., Anderson M. A. Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors. Plant Cell. 1993 Feb;5(2):203–213. doi: 10.1105/tpc.5.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bond J. S., Butler P. E. Intracellular proteases. Annu Rev Biochem. 1987;56:333–364. doi: 10.1146/annurev.bi.56.070187.002001. [DOI] [PubMed] [Google Scholar]
  3. Cohen L. W., Coghlan V. M., Dihel L. C. Cloning and sequencing of papain-encoding cDNA. Gene. 1986;48(2-3):219–227. doi: 10.1016/0378-1119(86)90080-6. [DOI] [PubMed] [Google Scholar]
  4. FREUND J. The effect of paraffin oil and mycobacteria on antibody formation and sensitization; a review. Am J Clin Pathol. 1951 Jul;21(7):645–656. doi: 10.1093/ajcp/21.7.645. [DOI] [PubMed] [Google Scholar]
  5. Hara-Nishimura I., Inoue K., Nishimura M. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett. 1991 Dec 2;294(1-2):89–93. doi: 10.1016/0014-5793(91)81349-d. [DOI] [PubMed] [Google Scholar]
  6. Hara-Nishimura I., Nishimura M., Akazawa T. Biosynthesis and Intracellular Transport of 11S Globulin in Developing Pumpkin Cotyledons. Plant Physiol. 1985 Mar;77(3):747–752. doi: 10.1104/pp.77.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hara-Nishimura I., Nishimura M., Matsubara H., Akazawa T. Suborganellar localization of proteinase catalyzing the limited hydrolysis of pumpkin globulin. Plant Physiol. 1982 Sep;70(3):699–703. doi: 10.1104/pp.70.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hara-Nishimura I., Nishimura M. Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons. Plant Physiol. 1987 Oct;85(2):440–445. doi: 10.1104/pp.85.2.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Klinkert M. Q., Felleisen R., Link G., Ruppel A., Beck E. Primary structures of Sm31/32 diagnostic proteins of Schistosoma mansoni and their identification as proteases. Mol Biochem Parasitol. 1989 Mar 1;33(2):113–122. doi: 10.1016/0166-6851(89)90025-x. [DOI] [PubMed] [Google Scholar]
  10. Krebbers E., Herdies L., De Clercq A., Seurinck J., Leemans J., Van Damme J., Segura M., Gheysen G., Van Montagu M., Vandekerckhove J. Determination of the Processing Sites of an Arabidopsis 2S Albumin and Characterization of the Complete Gene Family. Plant Physiol. 1988 Aug;87(4):859–866. doi: 10.1104/pp.87.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Mori H., Takeda-Yoshikawa Y., Hara-Nishimura I., Nishimura M. Pumpkin malate synthase. Cloning and sequencing of the cDNA and northern blot analysis. Eur J Biochem. 1991 Apr 23;197(2):331–336. doi: 10.1111/j.1432-1033.1991.tb15915.x. [DOI] [PubMed] [Google Scholar]
  14. Neurath H. Proteolytic processing and physiological regulation. Trends Biochem Sci. 1989 Jul;14(7):268–271. doi: 10.1016/0968-0004(89)90061-3. [DOI] [PubMed] [Google Scholar]
  15. Pueyo J. J., Hunt D. C., Chrispeels M. J. Activation of bean (Phaseolus vulgaris) alpha-amylase inhibitor requires proteolytic processing of the proprotein. Plant Physiol. 1993 Apr;101(4):1341–1348. doi: 10.1104/pp.101.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  17. Scott M. P., Jung R., Muntz K., Nielsen N. C. A protease responsible for post-translational cleavage of a conserved Asn-Gly linkage in glycinin, the major seed storage protein of soybean. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):658–662. doi: 10.1073/pnas.89.2.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES