Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Dec;5(12):1749–1759. doi: 10.1105/tpc.5.12.1749

Induction of a Highly Specific Antiviral State in Transgenic Plants: Implications for Regulation of Gene Expression and Virus Resistance.

JA Lindbo 1, L Silva-Rosales 1, WM Proebsting 1, WG Dougherty 1
PMCID: PMC160401  PMID: 12271055

Abstract

Transgenic tobacco plants expressing either a full-length form of the tobacco etch virus (TEV) coat protein or a form truncated at the N terminus of the TEV coat protein were initially susceptible to TEV infection, and typical systemic symptoms developed. However, 3 to 5 weeks after a TEV infection was established, transgenic plants "recovered" from the TEV infection, and new stem and leaf tissue emerged symptom and virus free. A TEV-resistant state was induced in the recovered tissue. The resistance was virus specific. Recovered plant tissue could not be infected with TEV, but was susceptible to the closely related virus, potato virus Y. The resistance phenotype was functional at the single-cell level because protoplasts from recovered transgenic tissue did not support TEV replication. Surprisingly, steady state transgene mRNA levels in recovered tissue were 12-to 22-fold less than transgene mRNA levels in uninoculated transgenic tissue of the same developmental stage. However, nuclear run-off studies suggested that transgene transcription rates in recovered and uninoculated plants were similar. We propose that the resistant state and reduced steady state levels of transgene transcript accumulation are mediated at the cellular level by a cytoplasmic activity that targets specific RNA sequences for inactivation.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Branch A. D., Benenfeld B. J., Franck E. R., Shaw J. F., Varban M. L., Willis K. K., Rosen D. L., Robertson H. D. Interference between coinoculated viroids. Virology. 1988 Apr;163(2):538–546. doi: 10.1016/0042-6822(88)90294-2. [DOI] [PubMed] [Google Scholar]
  2. Fang G., Grumet R. Genetic engineering of potyvirus resistance using constructs derived from the zucchini yellow mosaic virus coat protein gene. Mol Plant Microbe Interact. 1993 May-Jun;6(3):358–367. doi: 10.1094/mpmi-6-358. [DOI] [PubMed] [Google Scholar]
  3. Goldbach R. Genome similarities between plant and animal RNA viruses. Microbiol Sci. 1987 Jul;4(7):197–202. [PubMed] [Google Scholar]
  4. Hart C. M., Fischer B., Neuhaus J. M., Meins F., Jr Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Mol Gen Genet. 1992 Nov;235(2-3):179–188. doi: 10.1007/BF00279359. [DOI] [PubMed] [Google Scholar]
  5. Hobbs S. L., Kpodar P., DeLong C. M. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol. 1990 Dec;15(6):851–864. doi: 10.1007/BF00039425. [DOI] [PubMed] [Google Scholar]
  6. Hobbs S. L., Warkentin T. D., DeLong C. M. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol. 1993 Jan;21(1):17–26. doi: 10.1007/BF00039614. [DOI] [PubMed] [Google Scholar]
  7. Huntley C. C., Hall T. C. Minus sense transcripts of brome mosaic virus RNA-3 intercistronic region interfere with viral replication. Virology. 1993 Jan;192(1):290–297. doi: 10.1006/viro.1993.1032. [DOI] [PubMed] [Google Scholar]
  8. Jones R. W., Jackson A. O., Morris T. J. Defective-interfering RNAs and elevated temperatures inhibit replication of tomato bushy stunt virus in inoculated protoplasts. Virology. 1990 Jun;176(2):539–545. doi: 10.1016/0042-6822(90)90024-l. [DOI] [PubMed] [Google Scholar]
  9. Lindbo J. A., Dougherty W. G. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology. 1992 Aug;189(2):725–733. doi: 10.1016/0042-6822(92)90595-g. [DOI] [PubMed] [Google Scholar]
  10. Ling K., Namba S., Gonsalves C., Slightom J. L., Gonsalves D. Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene. Biotechnology (N Y) 1991 Aug;9(8):752–758. doi: 10.1038/nbt0891-752. [DOI] [PubMed] [Google Scholar]
  11. Matzke M. A., Matzke A. J. Differential inactivation and methylation of a transgene in plants by two suppressor loci containing homologous sequences. Plant Mol Biol. 1991 May;16(5):821–830. doi: 10.1007/BF00015074. [DOI] [PubMed] [Google Scholar]
  12. Matzke M. A., Primig M., Trnovsky J., Matzke A. J. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 1989 Mar;8(3):643–649. doi: 10.1002/j.1460-2075.1989.tb03421.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Napoli C., Lemieux C., Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell. 1990 Apr;2(4):279–289. doi: 10.1105/tpc.2.4.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Niblett C. L., Dickson E., Fernow K. H., Horst R. K., Zaitlin M. Cross protection among four viroids. Virology. 1978 Nov;91(1):198–203. doi: 10.1016/0042-6822(78)90368-9. [DOI] [PubMed] [Google Scholar]
  15. Pang S. Z., Slightom J. L., Gonsalves D. Different mechanisms protect transgenic tobacco against tomato spotted wilt and impatiens necrotic spot Tospoviruses. Biotechnology (N Y) 1993 Jul;11(7):819–824. doi: 10.1038/nbt0793-819. [DOI] [PubMed] [Google Scholar]
  16. Riechmann J. L., Laín S., García J. A. Highlights and prospects of potyvirus molecular biology. J Gen Virol. 1992 Jan;73(Pt 1):1–16. doi: 10.1099/0022-1317-73-1-1. [DOI] [PubMed] [Google Scholar]
  17. Schiebel W., Haas B., Marinković S., Klanner A., Sänger H. L. RNA-directed RNA polymerase from tomato leaves. I. Purification and physical properties. J Biol Chem. 1993 Jun 5;268(16):11851–11857. [PubMed] [Google Scholar]
  18. Smith C. J., Watson C. F., Bird C. R., Ray J., Schuch W., Grierson D. Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol Gen Genet. 1990 Dec;224(3):477–481. doi: 10.1007/BF00262443. [DOI] [PubMed] [Google Scholar]
  19. Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J. P., Ryals J. A. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. de Carvalho F., Gheysen G., Kushnir S., Van Montagu M., Inzé D., Castresana C. Suppression of beta-1,3-glucanase transgene expression in homozygous plants. EMBO J. 1992 Jul;11(7):2595–2602. doi: 10.1002/j.1460-2075.1992.tb05324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. de Haan P., Gielen J. J., Prins M., Wijkamp I. G., van Schepen A., Peters D., van Grinsven M. Q., Goldbach R. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Biotechnology (N Y) 1992 Oct;10(10):1133–1137. doi: 10.1038/nbt1092-1133. [DOI] [PubMed] [Google Scholar]
  22. van der Krol A. R., Mur L. A., Beld M., Mol J. N., Stuitje A. R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell. 1990 Apr;2(4):291–299. doi: 10.1105/tpc.2.4.291. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES