Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1993 Dec;5(12):1843–1852. doi: 10.1105/tpc.5.12.1843

RNA Editing in Plant Mitochondria: [alpha]-Phosphate Is Retained during C-to-U Conversion in mRNAs.

VK Rajasekhar 1, RM Mulligan 1
PMCID: PMC160409  PMID: 12271058

Abstract

RNA editing in higher plant mitochondria frequently results in the post-transcriptional conversion of specific cytidine residues to uridine residues and infrequently results in the reverse conversion. The mechanisms by which this transition could occur are deamination or transamination of the amide at C-4 of cytosine, transglycosylation of the ribosyl residue, or deletion of a CMP residue and insertion of a UMP residue. Intact maize or petunia mitochondria were supplied with [alpha]-32P-CTP to radiolabel CMP residues in the nascent transcripts, and the fate of the [alpha]-phosphate was examined by digestion of the RNA to nucleotide monophosphates and analysis by two-dimensional chromatography. A small fraction of radioactivity comigrated with UMP on two different two-dimensional thin-layer chromatography systems, and the amount of radiolabeled UMP increased between l0-min and 2-hr incubations. The conversion of cytidine-to-uridine residues was detected in the highly edited mRNA fraction but was not detected in the rRNA fraction. Recovery of radiolabeled UMP residues suggests that the [alpha]-phosphate is retained during the editing reaction. These results are consistent with either deamination or transamination, or transglycosylation mechanisms for RNA editing.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araya A., Domec C., Begu D., Litvak S. An in vitro system for the editing of ATP synthase subunit 9 mRNA using wheat mitochondrial extracts. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1040–1044. doi: 10.1073/pnas.89.3.1040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bass B. L., Weintraub H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell. 1988 Dec 23;55(6):1089–1098. doi: 10.1016/0092-8674(88)90253-x. [DOI] [PubMed] [Google Scholar]
  3. Covello P. S., Gray M. W. Differences in editing at homologous sites in messenger RNAs from angiosperm mitochondria. Nucleic Acids Res. 1990 Sep 11;18(17):5189–5196. doi: 10.1093/nar/18.17.5189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Covello P. S., Gray M. W. RNA editing in plant mitochondria. Nature. 1989 Oct 19;341(6243):662–666. doi: 10.1038/341662a0. [DOI] [PubMed] [Google Scholar]
  5. Dewey R. E., Levings C. S., Timothy D. H. Nucleotide sequence of ATPase subunit 6 gene of maize mitochondria. Plant Physiol. 1985 Nov;79(3):914–919. doi: 10.1104/pp.79.3.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fox T. D., Leaver C. J. The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell. 1981 Nov;26(3 Pt 1):315–323. doi: 10.1016/0092-8674(81)90200-2. [DOI] [PubMed] [Google Scholar]
  7. Gray M. W., Covello P. S. RNA editing in plant mitochondria and chloroplasts. FASEB J. 1993 Jan;7(1):64–71. doi: 10.1096/fasebj.7.1.8422976. [DOI] [PubMed] [Google Scholar]
  8. Gualberto J. M., Bonnard G., Lamattina L., Grienenberger J. M. Expression of the wheat mitochondrial nad3-rps12 transcription unit: correlation between editing and mRNA maturation. Plant Cell. 1991 Oct;3(10):1109–1120. doi: 10.1105/tpc.3.10.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hiesel R., Wissinger B., Schuster W., Brennicke A. RNA editing in plant mitochondria. Science. 1989 Dec 22;246(4937):1632–1634. doi: 10.1126/science.2480644. [DOI] [PubMed] [Google Scholar]
  10. Hoch B., Maier R. M., Appel K., Igloi G. L., Kössel H. Editing of a chloroplast mRNA by creation of an initiation codon. Nature. 1991 Sep 12;353(6340):178–180. doi: 10.1038/353178a0. [DOI] [PubMed] [Google Scholar]
  11. Hodges P. E., Navaratnam N., Greeve J. C., Scott J. Site-specific creation of uridine from cytidine in apolipoprotein B mRNA editing. Nucleic Acids Res. 1991 Mar 25;19(6):1197–1201. doi: 10.1093/nar/19.6.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Isaac P. G., Jones V. P., Leaver C. J. The maize cytochrome c oxidase subunit I gene: sequence, expression and rearrangement in cytoplasmic male sterile plants. EMBO J. 1985 Jul;4(7):1617–1623. doi: 10.1002/j.1460-2075.1985.tb03828.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kemble R. J., Gunn R. E., Flavell R. B. Classification of Normal and Male-Sterile Cytoplasms in Maize. II. Electrophoretic Analysis of DNA Species in Mitochondria. Genetics. 1980 Jun;95(2):451–458. doi: 10.1093/genetics/95.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lau P. P., Xiong W. J., Zhu H. J., Chen S. H., Chan L. Apolipoprotein B mRNA editing is an intranuclear event that occurs posttranscriptionally coincident with splicing and polyadenylation. J Biol Chem. 1991 Oct 25;266(30):20550–20554. [PubMed] [Google Scholar]
  15. Lonergan K. M., Gray M. W. Editing of transfer RNAs in Acanthamoeba castellanii mitochondria. Science. 1993 Feb 5;259(5096):812–816. doi: 10.1126/science.8430334. [DOI] [PubMed] [Google Scholar]
  16. Lu B., Hanson M. R. A single nuclear gene specifies the abundance and extent of RNA editing of a plant mitochondrial transcript. Nucleic Acids Res. 1992 Nov 11;20(21):5699–5703. doi: 10.1093/nar/20.21.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maloney A. P., Traynor P. L., Levings C. S., 3rd, Walbot V. Identification in maize mitochondrial 26S rRNA of a short 5'-end sequence possibly involved in transcription initiation and processing. Curr Genet. 1989 Mar;15(3):207–212. doi: 10.1007/BF00435507. [DOI] [PubMed] [Google Scholar]
  18. Maloney A. P., Walbot V. Structural analysis of mature and dicistronic transcripts from the 18 S and 5 S ribosomal RNA genes of maize mitochondria. J Mol Biol. 1990 Jun 20;213(4):633–649. doi: 10.1016/S0022-2836(05)80252-9. [DOI] [PubMed] [Google Scholar]
  19. Mulligan R. M., Lau G. T., Walbot V. Numerous transcription initiation sites exist for the maize mitochondrial genes for subunit 9 of the ATP synthase and subunit 3 of cytochrome oxidase. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7998–8002. doi: 10.1073/pnas.85.21.7998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mulligan R. M., Leon P., Walbot V. Transcriptional and posttranscriptional regulation of maize mitochondrial gene expression. Mol Cell Biol. 1991 Jan;11(1):533–543. doi: 10.1128/mcb.11.1.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mulligan R. M., Maloney A. P., Walbot V. RNA processing and multiple transcription initiation sites result in transcript size heterogeneity in maize mitochondria. Mol Gen Genet. 1988 Mar;211(3):373–380. doi: 10.1007/BF00425688. [DOI] [PubMed] [Google Scholar]
  22. Muramatsu T., Yokoyama S., Horie N., Matsuda A., Ueda T., Yamaizumi Z., Kuchino Y., Nishimura S., Miyazawa T. A novel lysine-substituted nucleoside in the first position of the anticodon of minor isoleucine tRNA from Escherichia coli. J Biol Chem. 1988 Jul 5;263(19):9261–9267. doi: 10.1351/pac198961030573. [DOI] [PubMed] [Google Scholar]
  23. Polson A. G., Crain P. F., Pomerantz S. C., McCloskey J. A., Bass B. L. The mechanism of adenosine to inosine conversion by the double-stranded RNA unwinding/modifying activity: a high-performance liquid chromatography-mass spectrometry analysis. Biochemistry. 1991 Dec 10;30(49):11507–11514. doi: 10.1021/bi00113a004. [DOI] [PubMed] [Google Scholar]
  24. Schuster W., Hiesel R., Wissinger B., Brennicke A. RNA editing in the cytochrome b locus of the higher plant Oenothera berteriana includes a U-to-C transition. Mol Cell Biol. 1990 May;10(5):2428–2431. doi: 10.1128/mcb.10.5.2428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schuster W., Ternes R., Knoop V., Hiesel R., Wissinger B., Brennicke A. Distribution of RNA editing sites in Oenothera mitochondrial mRNAs and rRNAs. Curr Genet. 1991 Nov;20(5):397–404. doi: 10.1007/BF00317068. [DOI] [PubMed] [Google Scholar]
  26. Silberklang M., Gillum A. M., RajBhandary U. L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. doi: 10.1016/0076-6879(79)59072-7. [DOI] [PubMed] [Google Scholar]
  27. Sommer B., Köhler M., Sprengel R., Seeburg P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell. 1991 Oct 4;67(1):11–19. doi: 10.1016/0092-8674(91)90568-j. [DOI] [PubMed] [Google Scholar]
  28. Stern L., Schulman L. H. The role of the minor base N4-acetylcytidine in the function of the Escherichia coli noninitiator methionine transfer RNA. J Biol Chem. 1978 Sep 10;253(17):6132–6139. [PubMed] [Google Scholar]
  29. Sutton C. A., Conklin P. L., Pruitt K. D., Hanson M. R. Editing of pre-mRNAs can occur before cis- and trans-splicing in Petunia mitochondria. Mol Cell Biol. 1991 Aug;11(8):4274–4277. doi: 10.1128/mcb.11.8.4274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yang A. J., Mulligan R. M. RNA editing intermediates of cox2 transcripts in maize mitochondria. Mol Cell Biol. 1991 Aug;11(8):4278–4281. doi: 10.1128/mcb.11.8.4278. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES