Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Jan;6(1):11–23. doi: 10.1105/tpc.6.1.11

Pollination- or Wound-Induced Kaempferol Accumulation in Petunia Stigmas Enhances Seed Production.

T Vogt 1, P Pollak 1, N Tarlyn 1, L P Taylor 1
PMCID: PMC160412  PMID: 12244218

Abstract

Flavonols are essential for pollen germination and tube growth in petunia and can be supplied by either the pollen or stigma at pollination. HPLC analysis and a sensitive bioassay demonstrated that both pollination and wounding induce flavonol accumulation, especially kaempferol, in the outer cell layers and exudate of the stigma. Pollination and wounding induced nearly identical flavonol kinetics and patterns of accumulation in the same target tissue, suggesting that they share elements of a common signal transduction pathway. The wound response was systemic, because kaempferol accumulated in the stigma when distal tissues, such as the corolla, stamens, or sepals, were wounded. We have exploited the germination requirement for flavonols and the high level of kaempferol that accumulates after wounding to enhance plant fecundity. Seed set was significantly increased by mechanically wounding the corolla and stamens prior to the application of pollen to the stigma. A reproductive role for a plant secondary metabolite and the specific function of stigmatic kaempferol are discussed from an evolutionary perspective.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson A. H., Heath R. L., Simpson R. J., Clarke A. E., Anderson M. A. Proteinase inhibitors in Nicotiana alata stigmas are derived from a precursor protein which is processed into five homologous inhibitors. Plant Cell. 1993 Feb;5(2):203–213. doi: 10.1105/tpc.5.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braam J., Davis R. W. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell. 1990 Feb 9;60(3):357–364. doi: 10.1016/0092-8674(90)90587-5. [DOI] [PubMed] [Google Scholar]
  3. Bécard G., Douds D. D., Pfeffer P. E. Extensive In Vitro Hyphal Growth of Vesicular-Arbuscular Mycorrhizal Fungi in the Presence of CO(2) and Flavonols. Appl Environ Microbiol. 1992 Mar;58(3):821–825. doi: 10.1128/aem.58.3.821-825.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Herrero M., Dickinson H. G. Pollen-pistil incompatibility in Petunia hybrida: changes in the pistil following compatible and incompatible intraspecific crosses. J Cell Sci. 1979 Apr;36:1–18. doi: 10.1242/jcs.36.1.1. [DOI] [PubMed] [Google Scholar]
  5. JUNG H. Uber den Einfluss der Oestrogene und Gestagene auf die Aktionspotentiale und die Erregungsbildung des Uterus. Pflugers Arch. 1956;263(4):426–438. [PubMed] [Google Scholar]
  6. Lawton M. A., Lamb C. J. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol Cell Biol. 1987 Jan;7(1):335–341. doi: 10.1128/mcb.7.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Li J., Ou-Lee T. M., Raba R., Amundson R. G., Last R. L. Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. Plant Cell. 1993 Feb;5(2):171–179. doi: 10.1105/tpc.5.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Maes M., Messens E. Phenol as grinding material in RNA preparations. Nucleic Acids Res. 1992 Aug 25;20(16):4374–4374. doi: 10.1093/nar/20.16.4374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mulcahy D. L. The rise of the angiosperms: a genecological factor. Science. 1979 Oct 5;206(4414):20–23. doi: 10.1126/science.206.4414.20. [DOI] [PubMed] [Google Scholar]
  10. Pollak P. E., Vogt T., Mo Y., Taylor L. P. Chalcone Synthase and Flavonol Accumulation in Stigmas and Anthers of Petunia hybrida. Plant Physiol. 1993 Jul;102(3):925–932. doi: 10.1104/pp.102.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schmelzer E., Jahnen W., Hahlbrock K. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves. Proc Natl Acad Sci U S A. 1988 May;85(9):2989–2993. doi: 10.1073/pnas.85.9.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stafford H. A. Flavonoid evolution: an enzymic approach. Plant Physiol. 1991 Jul;96(3):680–685. doi: 10.1104/pp.96.3.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ylstra B., Touraev A., Moreno R. M., Stöger E., van Tunen A. J., Vicente O., Mol J. N., Heberle-Bors E. Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol. 1992 Oct;100(2):902–907. doi: 10.1104/pp.100.2.902. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES