Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Feb;6(2):175–186. doi: 10.1105/tpc.6.2.175

The TM5 MADS Box Gene Mediates Organ Differentiation in the Three Inner Whorls of Tomato Flowers.

L Pnueli 1, D Hareven 1, L Broday 1, C Hurwitz 1, E Lifschitz 1
PMCID: PMC160425  PMID: 12244235

Abstract

The tomato MADS box gene no. 5 (TM5) is shown here to be expressed in meristematic domains fated to form the three inner whorls-petals, stamens, and gynoecia-of the tomato flower. TM5 is also expressed during organogenesis and in the respective mature organs of these three whorls. This is unlike the major organ identity genes of the MADS box family from Antirrhinum and Arabidopsis, which function in overlapping primordial territories consisting of only two floral whorls each. The developmental relevance of the unique expression pattern of this putative homeotic gene was examined in transgenic plants. In agreement with the expression patterns, antisense RNA of the TM5 gene conferred both early and late alterations of morphogenetic markers. Early defects consist of additional whorls or of a wrong number of organs per whorl. Late, organ-specific changes include evergreen, cauline, and unabscised petals; green, dialytic, and sterile anthers; and sterile carpels and defective styles on which glandular trichomes characteristic of sepals and petals are ectopically formed. However, a complete homeotic transformation of either organ was not observed. The early and late floral phenotypes of TM5 antisense plants suggest that TM5 mediates two unrelated secondary regulatory systems. One system is the early function of the floral meristem identity genes, and the other system is the function of the major floral organ identity genes.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
  2. Angenent G. C., Busscher M., Franken J., Mol J. N., van Tunen A. J. Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell. 1992 Aug;4(8):983–993. doi: 10.1105/tpc.4.8.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Angenent G. C., Franken J., Busscher M., Colombo L., van Tunen A. J. Petal and stamen formation in petunia is regulated by the homeotic gene fbp1. Plant J. 1993 Jul;4(1):101–112. doi: 10.1046/j.1365-313x.1993.04010101.x. [DOI] [PubMed] [Google Scholar]
  4. Bowman J. L., Smyth D. R., Meyerowitz E. M. Genetic interactions among floral homeotic genes of Arabidopsis. Development. 1991 May;112(1):1–20. doi: 10.1242/dev.112.1.1. [DOI] [PubMed] [Google Scholar]
  5. Cannon M., Platz J., O'Leary M., Sookdeo C., Cannon F. Organ-specific modulation of gene expression in transgenic plants using antisense RNA. Plant Mol Biol. 1990 Jul;15(1):39–47. doi: 10.1007/BF00017722. [DOI] [PubMed] [Google Scholar]
  6. Drews G. N., Bowman J. L., Meyerowitz E. M. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell. 1991 Jun 14;65(6):991–1002. doi: 10.1016/0092-8674(91)90551-9. [DOI] [PubMed] [Google Scholar]
  7. Jack T., Brockman L. L., Meyerowitz E. M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell. 1992 Feb 21;68(4):683–697. doi: 10.1016/0092-8674(92)90144-2. [DOI] [PubMed] [Google Scholar]
  8. Ma H., Yanofsky M. F., Meyerowitz E. M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 1991 Mar;5(3):484–495. doi: 10.1101/gad.5.3.484. [DOI] [PubMed] [Google Scholar]
  9. Mandel M. A., Bowman J. L., Kempin S. A., Ma H., Meyerowitz E. M., Yanofsky M. F. Manipulation of flower structure in transgenic tobacco. Cell. 1992 Oct 2;71(1):133–143. doi: 10.1016/0092-8674(92)90272-e. [DOI] [PubMed] [Google Scholar]
  10. Mizukami Y., Ma H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell. 1992 Oct 2;71(1):119–131. doi: 10.1016/0092-8674(92)90271-d. [DOI] [PubMed] [Google Scholar]
  11. Mol J. N., van der Krol A. R., van Tunen A. J., van Blokland R., de Lange P., Stuitje A. R. Regulation of plant gene expression by antisense RNA. FEBS Lett. 1990 Aug 1;268(2):427–430. doi: 10.1016/0014-5793(90)81298-3. [DOI] [PubMed] [Google Scholar]
  12. Nishikawa T., Yamashita S., Namba H., Usa T., Tominaga T., Kimura H., Izumi M., Nagataki S. Interferon-gamma inhibition of human thyrotropin receptor gene expression. J Clin Endocrinol Metab. 1993 Oct;77(4):1084–1089. doi: 10.1210/jcem.77.4.8408457. [DOI] [PubMed] [Google Scholar]
  13. Pnueli L., Abu-Abeid M., Zamir D., Nacken W., Schwarz-Sommer Z., Lifschitz E. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1991 Sep;1(2):255–266. [PubMed] [Google Scholar]
  14. Pnueli L., Hareven D., Rounsley S. D., Yanofsky M. F., Lifschitz E. Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell. 1994 Feb;6(2):163–173. doi: 10.1105/tpc.6.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pri-Hadash A., Hareven D., Lifschitz E. A meristem-related gene from tomato encodes a dUTPase: analysis of expression in vegetative and floral meristems. Plant Cell. 1992 Feb;4(2):149–159. doi: 10.1105/tpc.4.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Samach A., Hareven D., Gutfinger T., Ken-Dror S., Lifschitz E. Biosynthetic threonine deaminase gene of tomato: isolation, structure, and upregulation in floral organs. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2678–2682. doi: 10.1073/pnas.88.7.2678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schwarz-Sommer Z., Huijser P., Nacken W., Saedler H., Sommer H. Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science. 1990 Nov 16;250(4983):931–936. doi: 10.1126/science.250.4983.931. [DOI] [PubMed] [Google Scholar]
  18. Shahar T., Hennig N., Gutfinger T., Hareven D., Lifschitz E. The tomato 66.3-kD polyphenoloxidase gene: molecular identification and developmental expression. Plant Cell. 1992 Feb;4(2):135–147. doi: 10.1105/tpc.4.2.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Takayama K. M., Inouye M. Antisense RNA. Crit Rev Biochem Mol Biol. 1990;25(3):155–184. doi: 10.3109/10409239009090608. [DOI] [PubMed] [Google Scholar]
  20. Tröbner W., Ramirez L., Motte P., Hue I., Huijser P., Lönnig W. E., Saedler H., Sommer H., Schwarz-Sommer Z. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 1992 Dec;11(13):4693–4704. doi: 10.1002/j.1460-2075.1992.tb05574.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES