Abstract
A genetic screen for mutants of Arabidopsis that are hypersensitive to UV light was developed and used to isolate a new mutant designated uvh1. UV hypersensitivity in uvh1 was due to a single recessive trait that is probably located on chromosome 3. Although isolated as hypersensitive to an acute exposure to UV-C light, uvh1 was also hypersensitive to UV-B wavelengths, which are present in sunlight that reaches the earth's surface. UV-B damage to both wild-type and uvh1 plants could be significantly reduced by subsequent exposure of UV-irradiated plants to photoreactivating light, showing that photoreactivation of UV-B damage is important for plant viability and that uvh1 plants are not defective in photoreactivation. A new assay for DNA damage, the Dral assay, was developed and used to show that exposure of wild-type and uvh1 plants to a given dose of UV light induces the same amount of damage in chloroplast and nuclear DNA. Thus, uvh1 is not defective in a UV protective mechanism. uvh1 plants were also found to be hypersensitive to ionizing radiation. These results suggest that uvh1 is defective in a repair or tolerance mechanism that normally provides plants with resistance to several types of DNA damage.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Britt A. B., Chen J. J., Wykoff D., Mitchell D. A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidinone(6-4) dimers. Science. 1993 Sep 17;261(5128):1571–1574. doi: 10.1126/science.8372351. [DOI] [PubMed] [Google Scholar]
- Cox B. S., Parry J. M. The isolation, genetics and survival characteristics of ultraviolet light-sensitive mutants in yeast. Mutat Res. 1968 Jul-Aug;6(1):37–55. doi: 10.1016/0027-5107(68)90101-2. [DOI] [PubMed] [Google Scholar]
- Dizdaroglu M., Bergtold D. S. Characterization of free radical-induced base damage in DNA at biologically relevant levels. Anal Biochem. 1986 Jul;156(1):182–188. doi: 10.1016/0003-2697(86)90171-5. [DOI] [PubMed] [Google Scholar]
- Friedberg E. C. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol Rev. 1988 Mar;52(1):70–102. doi: 10.1128/mr.52.1.70-102.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths T. D., Ling S. Y. Effects of UV light on DNA chain growth and replicon initiation in human cells. Mutat Res. 1989 Sep;218(2):87–94. doi: 10.1016/0921-8777(89)90014-1. [DOI] [PubMed] [Google Scholar]
- HILL R. F. A radiation-sensitive mutant of Escherichia coli. Biochim Biophys Acta. 1958 Dec;30(3):636–637. doi: 10.1016/0006-3002(58)90112-4. [DOI] [PubMed] [Google Scholar]
- Jordan B. R., Chow W. S., Strid A., Anderson J. M. Reduction in cab and psb A RNA transcripts in response to supplementary ultraviolet-B radiation. FEBS Lett. 1991 Jun 17;284(1):5–8. doi: 10.1016/0014-5793(91)80748-r. [DOI] [PubMed] [Google Scholar]
- Li J., Ou-Lee T. M., Raba R., Amundson R. G., Last R. L. Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. Plant Cell. 1993 Feb;5(2):171–179. doi: 10.1105/tpc.5.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michalowski C. B., Bohnert H. J., Klessig D. F., Berry J. O. Nucleotide sequence of rbcL from Amaranthus hypochondriacus chloroplasts. Nucleic Acids Res. 1990 Apr 25;18(8):2187–2187. doi: 10.1093/nar/18.8.2187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pang Q., Hays J. B. UV-B-Inducible and Temperature-Sensitive Photoreactivation of Cyclobutane Pyrimidine Dimers in Arabidopsis thaliana. Plant Physiol. 1991 Feb;95(2):536–543. doi: 10.1104/pp.95.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sancar A., Sancar G. B. DNA repair enzymes. Annu Rev Biochem. 1988;57:29–67. doi: 10.1146/annurev.bi.57.070188.000333. [DOI] [PubMed] [Google Scholar]
- Sauerbier W., Hercules K. Gene and transcription unit mapping by radiation effects. Annu Rev Genet. 1978;12:329–363. doi: 10.1146/annurev.ge.12.120178.001553. [DOI] [PubMed] [Google Scholar]
- Stapleton A. E. Ultraviolet Radiation and Plants: Burning Questions. Plant Cell. 1992 Nov;4(11):1353–1358. doi: 10.1105/tpc.4.11.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todo T., Takemori H., Ryo H., Ihara M., Matsunaga T., Nikaido O., Sato K., Nomura T. A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4)photoproducts. Nature. 1993 Jan 28;361(6410):371–374. doi: 10.1038/361371a0. [DOI] [PubMed] [Google Scholar]
- Unfried I., Stocker U., Gruendler P. Nucleotide sequence of the 18S rRNA gene from Arabidopsis thaliana Co10. Nucleic Acids Res. 1989 Sep 25;17(18):7513–7513. doi: 10.1093/nar/17.18.7513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittaker P. A., Southern E. M. Ultraviolet irradiation of DNA: a way of generating partial digests for rapid restriction site mapping. Gene. 1986;41(1):129–134. doi: 10.1016/0378-1119(86)90276-3. [DOI] [PubMed] [Google Scholar]