Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Mar;6(3):385–392. doi: 10.1105/tpc.6.3.385

A Seed Shape Mutant of Arabidopsis That Is Affected in Integument Development.

K M Leon-Kloosterziel 1, C J Keijzer 1, M Koornneef 1
PMCID: PMC160441  PMID: 12244241

Abstract

A seed shape mutant of Arabidopsis was isolated from an ethyl methanesulfonate-treated population. Genetic analysis revealed that the heart-shaped phenotype was maternally inherited, showing that this is a testa mutant. This indicated the importance of the testa for the determination of the seed shape. This recessive aberrant testa shape (ats) gene was located at position 59.0 on chromosome 5. A comparison was made between ovules and developing and mature seeds of the wild type and of the mutant using light and scanning electron microscopy. We showed that the mutant seed shape is determined during the first few days after fertilization, when the embryo occupies only a very small part of the seed. The integuments of ats ovules consisted of only three rather than five cell layers. In double mutants, the effect of ats was additive to other testa mutations, such as transparent testa, glabra (ttg), glabrous2 (gl2), and apetala2 (ap2). The ats mutation resulted in a reduced dormancy, which was maternally inherited. This effect of a testa mutation on germination was also seen in ttg seeds, in which the outer layer of the testa was disturbed. This indicated the importance of the testa as a factor in determining dormancy in Arabidopsis.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowman J. L., Smyth D. R., Meyerowitz E. M. Genes directing flower development in Arabidopsis. Plant Cell. 1989 Jan;1(1):37–52. doi: 10.1105/tpc.1.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Lloyd A. M., Walbot V., Davis R. W. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science. 1992 Dec 11;258(5089):1773–1775. doi: 10.1126/science.1465611. [DOI] [PubMed] [Google Scholar]
  3. Reiser L., Fischer R. L. The Ovule and the Embryo Sac. Plant Cell. 1993 Oct;5(10):1291–1301. doi: 10.1105/tpc.5.10.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Robinson-Beers K., Pruitt R. E., Gasser C. S. Ovule Development in Wild-Type Arabidopsis and Two Female-Sterile Mutants. Plant Cell. 1992 Oct;4(10):1237–1249. doi: 10.1105/tpc.4.10.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Smyth D. R., Bowman J. L., Meyerowitz E. M. Early flower development in Arabidopsis. Plant Cell. 1990 Aug;2(8):755–767. doi: 10.1105/tpc.2.8.755. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES