Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Mar;6(3):417–426. doi: 10.1105/tpc.6.3.417

Reduced Position Effect in Mature Transgenic Plants Conferred by the Chicken Lysozyme Matrix-Associated Region.

L Mlynarova 1, A Loonen 1, J Heldens 1, R C Jansen 1, P Keizer 1, W J Stiekema 1, J P Nap 1
PMCID: PMC160444  PMID: 12244242

Abstract

Matrix-associated regions may be useful for studying the role of chromatin architecture in transgene activity of transformed plants. The chicken lysozyme A element was shown to have specific affinity for tobacco nuclear matrices, and its influence on the variability of transgene expression in tobacco plants was studied. T-DNA constructs in which this element flanked either the [beta]-glucuronidase (GUS) reporter gene or both reporter and selection gene were introduced in tobacco. The variation in GUS gene activity was reduced significantly among mature first-generation transgenic plants carrying the A element. Average GUS activity became somewhat higher, but the maximum attainable level of gene expression was similar for all three constructs. Transient gene expression assays showed that the A element did not contain general enhancer functions; therefore, its presence seemed to prevent the lower levels of transgene expression. The strongest reduction in variability was found in plants transformed with the construct carrying the A elements at the borders of the T-DNA. In this population, expression levels became copy number dependent. The presence of two A elements in the T-DNA did not interfere with meiosis.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen G. C., Hall G. E., Jr, Childs L. C., Weissinger A. K., Spiker S., Thompson W. F. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell. 1993 Jun;5(6):603–613. doi: 10.1105/tpc.5.6.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blundy K. S., Blundy M. A., Carter D., Wilson F., Park W. D., Burrell M. M. The expression of class I patatin gene fusions in transgenic potato varies with both gene and cultivar. Plant Mol Biol. 1991 Jan;16(1):153–160. doi: 10.1007/BF00017925. [DOI] [PubMed] [Google Scholar]
  4. Breyne P., van Montagu M., Depicker N., Gheysen G. Characterization of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell. 1992 Apr;4(4):463–471. doi: 10.1105/tpc.4.4.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dean C., Jones J., Favreau M., Dunsmuir P., Bedbrook J. Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants. Nucleic Acids Res. 1988 Oct 11;16(19):9267–9283. doi: 10.1093/nar/16.19.9267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Enyedi A. J., Yalpani N., Silverman P., Raskin I. Signal molecules in systemic plant resistance to pathogens and pests. Cell. 1992 Sep 18;70(6):879–886. doi: 10.1016/0092-8674(92)90239-9. [DOI] [PubMed] [Google Scholar]
  7. Grosveld F., van Assendelft G. B., Greaves D. R., Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell. 1987 Dec 24;51(6):975–985. doi: 10.1016/0092-8674(87)90584-8. [DOI] [PubMed] [Google Scholar]
  8. Hall G., Jr, Allen G. C., Loer D. S., Thompson W. F., Spiker S. Nuclear scaffolds and scaffold-attachment regions in higher plants. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9320–9324. doi: 10.1073/pnas.88.20.9320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hobbs S. L., Warkentin T. D., DeLong C. M. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol. 1993 Jan;21(1):17–26. doi: 10.1007/BF00039614. [DOI] [PubMed] [Google Scholar]
  10. Izaurralde E., Mirkovitch J., Laemmli U. K. Interaction of DNA with nuclear scaffolds in vitro. J Mol Biol. 1988 Mar 5;200(1):111–125. doi: 10.1016/0022-2836(88)90337-3. [DOI] [PubMed] [Google Scholar]
  11. Jackson D. A., Dickinson P., Cook P. R. The size of chromatin loops in HeLa cells. EMBO J. 1990 Feb;9(2):567–571. doi: 10.1002/j.1460-2075.1990.tb08144.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klehr D., Maass K., Bode J. Scaffold-attached regions from the human interferon beta domain can be used to enhance the stable expression of genes under the control of various promoters. Biochemistry. 1991 Feb 5;30(5):1264–1270. doi: 10.1021/bi00219a015. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K., Käs E., Poljak L., Adachi Y. Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr Opin Genet Dev. 1992 Apr;2(2):275–285. doi: 10.1016/s0959-437x(05)80285-0. [DOI] [PubMed] [Google Scholar]
  15. Ludérus M. E., de Graaf A., Mattia E., den Blaauwen J. L., Grande M. A., de Jong L., van Driel R. Binding of matrix attachment regions to lamin B1. Cell. 1992 Sep 18;70(6):949–959. doi: 10.1016/0092-8674(92)90245-8. [DOI] [PubMed] [Google Scholar]
  16. McKnight R. A., Shamay A., Sankaran L., Wall R. J., Hennighausen L. Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6943–6947. doi: 10.1073/pnas.89.15.6943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mielke C., Kohwi Y., Kohwi-Shigematsu T., Bode J. Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivo. Biochemistry. 1990 Aug 14;29(32):7475–7485. doi: 10.1021/bi00484a017. [DOI] [PubMed] [Google Scholar]
  18. Nap J. P., Dirkse W. G., Louwerse J., Onstenk J., Visser R., Loonen A., Heidekamp F., Stiekema W. J. Analysis of the region in between two closely linked patatin genes: class II promoter activity in tuber, root and leaf. Plant Mol Biol. 1992 Nov;20(4):683–694. doi: 10.1007/BF00046453. [DOI] [PubMed] [Google Scholar]
  19. Nap J. P., van Spanje M., Dirkse W. G., Baarda G., Mlynarova L., Loonen A., Grondhuis P., Stiekema W. J. Activity of the promoter of the Lhca3.St.1 gene, encoding the potato apoprotein 2 of the light-harvesting complex of Photosystem I, in transgenic potato and tobacco plants. Plant Mol Biol. 1993 Nov;23(3):605–612. doi: 10.1007/BF00019307. [DOI] [PubMed] [Google Scholar]
  20. Peach C., Velten J. Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol. 1991 Jul;17(1):49–60. doi: 10.1007/BF00036805. [DOI] [PubMed] [Google Scholar]
  21. Phi-Van L., von Kries J. P., Ostertag W., Strätling W. H. The chicken lysozyme 5' matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Mol Cell Biol. 1990 May;10(5):2302–2307. doi: 10.1128/mcb.10.5.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reitman M., Lee E., Westphal H., Felsenfeld G. Site-independent expression of the chicken beta A-globin gene in transgenic mice. Nature. 1990 Dec 20;348(6303):749–752. doi: 10.1038/348749a0. [DOI] [PubMed] [Google Scholar]
  23. Schöffl F., Schröder G., Kliem M., Rieping M. An SAR sequence containing 395 bp DNA fragment mediates enhanced, gene-dosage-correlated expression of a chimaeric heat shock gene in transgenic tobacco plants. Transgenic Res. 1993 Mar;2(2):93–100. doi: 10.1007/BF01969382. [DOI] [PubMed] [Google Scholar]
  24. Slatter R. E., Dupree P., Gray J. C. A scaffold-associated DNA region is located downstream of the pea plastocyanin gene. Plant Cell. 1991 Nov;3(11):1239–1250. doi: 10.1105/tpc.3.11.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stief A., Winter D. M., Strätling W. H., Sippel A. E. A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature. 1989 Sep 28;341(6240):343–345. doi: 10.1038/341343a0. [DOI] [PubMed] [Google Scholar]
  26. Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J. P., Ryals J. A. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. von Kries J. P., Buhrmester H., Strätling W. H. A matrix/scaffold attachment region binding protein: identification, purification, and mode of binding. Cell. 1991 Jan 11;64(1):123–135. doi: 10.1016/0092-8674(91)90214-j. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES