Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Mar;6(3):439–448. doi: 10.1105/tpc.6.3.439

Flower-enhanced expression of a nuclear-encoded mitochondrial respiratory protein is associated with changes in mitochondrion number.

J Huang 1, F Struck 1, D F Matzinger 1, C S Levings 3rd 1
PMCID: PMC160446  PMID: 8180500

Abstract

The mitochondrial Rieske iron-sulfur protein is an obligatory component of the respiratory electron transport chain that is encoded by a single-copy gene in mammals and fungi. In contrast, this protein is encoded by a small gene family in dicotyledonous tobacco and monocotyledonous maize. We cloned four cDNAs from tobacco that encode the mitochondrial Rieske iron-sulfur protein. These clones, along with a previously isolated cDNA, represent five independent members of the gene family that can be divided into three subfamilies. All of these genes were derived from the two progenitor species and were expressed in amphidiploid tobacco. The proteins encoded by these five genes are probably functional because they all contain the universally conserved hexyl peptides necessary for the 2Fe-2S cluster formation. The expression of the Rieske protein gene family is differentially regulated; a 6- to 11-fold higher level of steady state transcripts was found in flowers than in leaves, stems, and roots. Members of at least two subfamilies were preferentially expressed in flowers, indicating that they share a common cis-regulatory element(s), which can respond to a flower-specific signal(s). Although approximately 10 times more transcripts occurred in flowers than in leaves, flower and leaf mitochondria contained a similar amount of the Rieske protein. Flowers, however, contained seven times more Rieske proteins than leaves. These results indicated an increase in mitochondrion number in flowers. High-energy demands during anther development might bring about an increase in mitochondrion numbers in flowers and the flower-enhanced expression of the Rieske protein gene family. Our results suggested that nuclear genes encoding mitochondrial respiratory proteins could sense and respond to changes in energy metabolism and/or changes in mitochondrion numbers.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beckmann J. D., Ljungdahl P. O., Lopez J. L., Trumpower B. L. Isolation and characterization of the nuclear gene encoding the Rieske iron-sulfur protein (RIP1) from Saccharomyces cerevisiae. J Biol Chem. 1987 Jun 25;262(18):8901–8909. [PubMed] [Google Scholar]
  3. Berry E. A., Huang L. S., DeRose V. J. Ubiquinol-cytochrome c oxidoreductase of higher plants. Isolation and characterization of the bc1 complex from potato tuber mitochondria. J Biol Chem. 1991 May 15;266(14):9064–9077. [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Davidson E., Ohnishi T., Atta-Asafo-Adjei E., Daldal F. Potential ligands to the [2Fe-2S] Rieske cluster of the cytochrome bc1 complex of Rhodobacter capsulatus probed by site-directed mutagenesis. Biochemistry. 1992 Apr 7;31(13):3342–3351. doi: 10.1021/bi00128a006. [DOI] [PubMed] [Google Scholar]
  6. De Paepe R., Forchioni A., Chétrit P., Vedel F. Specific mitochondrial proteins in pollen: presence of an additional ATP synthase beta subunit. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5934–5938. doi: 10.1073/pnas.90.13.5934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Graham L. A., Trumpower B. L. Mutational analysis of the mitochondrial Rieske iron-sulfur protein of Saccharomyces cerevisiae. III. Import, protease processing, and assembly into the cytochrome bc1 complex of iron-sulfur protein lacking the iron-sulfur cluster. J Biol Chem. 1991 Nov 25;266(33):22485–22492. [PubMed] [Google Scholar]
  8. Gray J. C., Kung S. D., Wildman S. G. Origin of Nicotiana tabacum L. detected by polypeptide composition of Fraction I protein. Nature. 1974 Nov 15;252(5480):226–227. doi: 10.1038/252226a0. [DOI] [PubMed] [Google Scholar]
  9. HATEFI Y., HAAVIK A. G., GRIFFITHS D. E. Studies on the electron transfer system. XLI. Reduced coenzyme Q (QH2)-cytochrome c reductase. J Biol Chem. 1962 May;237:1681–1685. [PubMed] [Google Scholar]
  10. Harnisch U., Weiss H., Sebald W. The primary structure of the iron-sulfur subunit of ubiquinol-cytochrome c reductase from Neurospora, determined by cDNA and gene sequencing. Eur J Biochem. 1985 May 15;149(1):95–99. doi: 10.1111/j.1432-1033.1985.tb08898.x. [DOI] [PubMed] [Google Scholar]
  11. Hartl F. U., Pfanner N., Nicholson D. W., Neupert W. Mitochondrial protein import. Biochim Biophys Acta. 1989 Jan 18;988(1):1–45. doi: 10.1016/0304-4157(89)90002-6. [DOI] [PubMed] [Google Scholar]
  12. Kelly R. J., Johnson R. D., Siegel A. Heterogeneity and organization of the ribosomal RNA genes of Cucurbita maxima. Plant Mol Biol. 1990 Jun;14(6):927–933. doi: 10.1007/BF00019390. [DOI] [PubMed] [Google Scholar]
  13. Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell. 1990 Dec;2(12):1201–1224. doi: 10.1105/tpc.2.12.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Madueño F., Napier J. A., Cejudo F. J., Gray J. C. Import and processing of the precursor of the Rieske FeS protein of tobacco chloroplasts. Plant Mol Biol. 1992 Oct;20(2):289–299. doi: 10.1007/BF00014496. [DOI] [PubMed] [Google Scholar]
  16. Mitchell P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol. 1976 Oct 21;62(2):327–367. doi: 10.1016/0022-5193(76)90124-7. [DOI] [PubMed] [Google Scholar]
  17. Monéger F., Mandaron P., Niogret M. F., Freyssinet G., Mache R. Expression of Chloroplast and Mitochondrial Genes during Microsporogenesis in Maize. Plant Physiol. 1992 Jun;99(2):396–400. doi: 10.1104/pp.99.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nishikimi M., Hosokawa Y., Toda H., Suzuki H., Ozawa T. Cloning and sequence analysis of a cDNA encoding the Rieske iron-sulfur protein of rat mitochondrial cytochrome bc1 complex. Biochem Biophys Res Commun. 1989 Feb 28;159(1):19–25. doi: 10.1016/0006-291x(89)92398-x. [DOI] [PubMed] [Google Scholar]
  19. Nishikimi M., Hosokawa Y., Toda H., Suzuki H., Ozawa T. The primary structure of human Rieske iron-sulfur protein of mitochondrial cytochrome bc1 complex deduced from cDNA analysis. Biochem Int. 1990;20(1):155–160. [PubMed] [Google Scholar]
  20. Pichersky E., Bernatzky R., Tanksley S. D., Cashmore A. R. Evidence for selection as a mechanism in the concerted evolution of Lycopersicon esculentum (tomato) genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3880–3884. doi: 10.1073/pnas.83.11.3880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. RIESKE J. S., ZAUGG W. S., HANSEN R. E. STUDIES ON THE ELECTRON TRANSFER SYSTEM. LIX. DISTRIBUTION OF IRON AND OF THE COMPONENT GIVING AN ELECTRON PARAMAGNETIC RESONANCE SIGNAL AT G = 1.90 IN SUBFRACTIONS OF COMPLEX 3. J Biol Chem. 1964 Sep;239:3023–3030. [PubMed] [Google Scholar]
  22. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  23. Siedow J. N., Power S., de la Rosa F. F., Palmer G. The preparation and characterization of highly purified, enzymically active complex III from baker's yeast. J Biol Chem. 1978 Apr 10;253(7):2392–2399. [PubMed] [Google Scholar]
  24. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  25. Trumpower B. L. Cytochrome bc1 complexes of microorganisms. Microbiol Rev. 1990 Jun;54(2):101–129. doi: 10.1128/mr.54.2.101-129.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Trumpower B. L., Edwards C. A. Purification of a reconstitutively active iron-sulfur protein (oxidation factor) from succinate . cytochrome c reductase complex of bovine heart mitochondria. J Biol Chem. 1979 Sep 10;254(17):8697–8706. [PubMed] [Google Scholar]
  27. Trumpower B. L. Function of the iron-sulfur protein of the cytochrome b-c1 segment in electron-transfer and energy-conserving reactions of the mitochondrial respiratory chain. Biochim Biophys Acta. 1981 Dec 4;639(2):129–155. doi: 10.1016/0304-4173(81)90008-2. [DOI] [PubMed] [Google Scholar]
  28. Usui S., Yu L., Yu C. A. Cloning and sequencing of a cDNA encoding the Rieske iron-sulfur protein of bovine heart mitochondrial ubiquinol-cytochrome c reductase. Biochem Biophys Res Commun. 1990 Mar 16;167(2):575–579. doi: 10.1016/0006-291x(90)92063-6. [DOI] [PubMed] [Google Scholar]
  29. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  30. Weiss H., Kolb H. J. Isolation of mitochondrial succinate: ubiquinone reductase, cytochrome c reductase and cytochrome c oxidase from Neurospora crassa using nonionic detergent. Eur J Biochem. 1979 Aug 15;99(1):139–149. doi: 10.1111/j.1432-1033.1979.tb13240.x. [DOI] [PubMed] [Google Scholar]
  31. Yang X. H., Trumpower B. L. Purification of a three-subunit ubiquinol-cytochrome c oxidoreductase complex from Paracoccus denitrificans. J Biol Chem. 1986 Sep 15;261(26):12282–12289. [PubMed] [Google Scholar]
  32. von Heijne G. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 1986 Jun;5(6):1335–1342. doi: 10.1002/j.1460-2075.1986.tb04364.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES