Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 May;6(5):601–612.

A truncated version of an ADP-glucose pyrophosphorylase promoter from potato specifies guard cell-selective expression in transgenic plants.

B Müller-Röber 1, U La Cognata 1, U Sonnewald 1, L Willmitzer 1
PMCID: PMC160462  PMID: 8038601

Abstract

ADP-glucose pyrophosphorylase (AGPase) is a key regulatory enzyme in starch biosynthesis in higher plants. A 3.2-kb promoter of the large subunit gene of the AGPase from potato has been isolated and its activity analyzed in transgenic potato and tobacco plants using a promoter-beta-glucuronidase fusion system. The promoter was active in various starch-containing cells, including guard cells, tuber parenchyma cells, and the starch sheath layer of stems and petioles. No expression was observed in mesophyll cells. Analysis of various promoter derivatives showed that with respect to expression in petioles and stems, essential elements must be located in the 5' distal region of the promoter, whereas elements important for expression in tuber parenchyma cells are located in an internal fragment comprising nucleotides from positions -500 to -1200. Finally, a 0.3-kb 5' proximal promoter fragment was identified that was sufficient to obtain exclusive expression in guard cells of transgenic potato and tobacco plants. The implications of our observations are discussed with respect to starch synthesis in various tissues and the use of the newly identified promoter as a tool for stomatal biology.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ainsworth C., Tarvis M., Clark J. Isolation and analysis of a cDNA clone encoding the small subunit of ADP-glucose pyrophosphorylase from wheat. Plant Mol Biol. 1993 Oct;23(1):23–33. doi: 10.1007/BF00021416. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. M., Hnilo J., Larson R., Okita T. W., Morell M., Preiss J. The encoded primary sequence of a rice seed ADP-glucose pyrophosphorylase subunit and its homology to the bacterial enzyme. J Biol Chem. 1989 Jul 25;264(21):12238–12242. [PubMed] [Google Scholar]
  3. Anderson J. M., Larsen R., Laudencia D., Kim W. T., Morrow D., Okita T. W., Preiss J. Molecular characterization of the gene encoding a rice endosperm-specific ADPglucose pyrophosphorylase subunit and its developmental pattern of transcription. Gene. 1991 Jan 15;97(2):199–205. doi: 10.1016/0378-1119(91)90052-d. [DOI] [PubMed] [Google Scholar]
  4. Bhave M. R., Lawrence S., Barton C., Hannah L. C. Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell. 1990 Jun;2(6):581–588. doi: 10.1105/tpc.2.6.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Chen E. Y., Seeburg P. H. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA. 1985 Apr;4(2):165–170. doi: 10.1089/dna.1985.4.165. [DOI] [PubMed] [Google Scholar]
  7. Deblaere R., Bytebier B., De Greve H., Deboeck F., Schell J., Van Montagu M., Leemans J. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 1985 Jul 11;13(13):4777–4788. doi: 10.1093/nar/13.13.4777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hylton C., Smith A. M. The rb Mutation of Peas Causes Structural and Regulatory Changes in ADP Glucose Pyrophosphorylase from Developing Embryos. Plant Physiol. 1992 Aug;99(4):1626–1634. doi: 10.1104/pp.99.4.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krishnan H. B., Reeves C. D., Okita T. W. ADPglucose Pyrophosphorylase Is Encoded by Different mRNA Transcripts in Leaf and Endosperm of Cereals. Plant Physiol. 1986 Jun;81(2):642–645. doi: 10.1104/pp.81.2.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lin T. P., Caspar T., Somerville C. R., Preiss J. A Starch Deficient Mutant of Arabidopsis thaliana with Low ADPglucose Pyrophosphorylase Activity Lacks One of the Two Subunits of the Enzyme. Plant Physiol. 1988 Dec;88(4):1175–1181. doi: 10.1104/pp.88.4.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lin T. P., Caspar T., Somerville C., Preiss J. Isolation and Characterization of a Starchless Mutant of Arabidopsis thaliana (L.) Heynh Lacking ADPglucose Pyrophosphorylase Activity. Plant Physiol. 1988 Apr;86(4):1131–1135. doi: 10.1104/pp.86.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liu X. Y., Rocha-Sosa M., Hummel S., Willmitzer L., Frommer W. B. A detailed study of the regulation and evolution of the two classes of patatin genes in Solanum tuberosum L. Plant Mol Biol. 1991 Dec;17(6):1139–1154. doi: 10.1007/BF00028731. [DOI] [PubMed] [Google Scholar]
  14. Morell M. K., Bloom M., Knowles V., Preiss J. Subunit Structure of Spinach Leaf ADPglucose Pyrophosphorylase. Plant Physiol. 1987 Sep;85(1):182–187. doi: 10.1104/pp.85.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Müller-Röber B. T., Kossmann J., Hannah L. C., Willmitzer L., Sonnewald U. One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet. 1990 Oct;224(1):136–146. doi: 10.1007/BF00259460. [DOI] [PubMed] [Google Scholar]
  16. Müller-Röber B., Sonnewald U., Willmitzer L. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J. 1992 Apr;11(4):1229–1238. doi: 10.1002/j.1460-2075.1992.tb05167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nakata P. A., Greene T. W., Anderson J. M., Smith-White B. J., Okita T. W., Preiss J. Comparison of the primary sequences of two potato tuber ADP-glucose pyrophosphorylase subunits. Plant Mol Biol. 1991 Nov;17(5):1089–1093. doi: 10.1007/BF00037149. [DOI] [PubMed] [Google Scholar]
  18. Okita T. W., Nakata P. A., Anderson J. M., Sowokinos J., Morell M., Preiss J. The Subunit Structure of Potato Tuber ADPglucose Pyrophosphorylase. Plant Physiol. 1990 Jun;93(2):785–790. doi: 10.1104/pp.93.2.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Outlaw W. H., Tarczynski M. C. Guard Cell Starch Biosynthesis Regulated by Effectors of ADP-Glucose Pyrophosphorylase. Plant Physiol. 1984 Feb;74(2):424–429. doi: 10.1104/pp.74.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peach C., Velten J. Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol. 1991 Jul;17(1):49–60. doi: 10.1007/BF00036805. [DOI] [PubMed] [Google Scholar]
  21. Pettersson G., Ryde-Pettersson U. Metabolites controlling the rate of starch synthesis in the chloroplast of C3 plants. Eur J Biochem. 1989 Jan 15;179(1):169–172. doi: 10.1111/j.1432-1033.1989.tb14536.x. [DOI] [PubMed] [Google Scholar]
  22. Reeves C. D., Krishnan H. B., Okita T. W. Gene Expression in Developing Wheat Endosperm : Accumulation of Gliadin and ADPglucose Pyrophosphorylase Messenger RNAs and Polypeptides. Plant Physiol. 1986 Sep;82(1):34–40. doi: 10.1104/pp.82.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Robinson N. L., Zeiger E., Preiss J. Regulation of ADPGlucose Synthesis in Guard Cells of Commelina communis. Plant Physiol. 1983 Nov;73(3):862–864. doi: 10.1104/pp.73.3.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rosahl S., Schell J., Willmitzer L. Expression of a tuber-specific storage protein in transgenic tobacco plants: demonstration of an esterase activity. EMBO J. 1987 May;6(5):1155–1159. doi: 10.1002/j.1460-2075.1987.tb02348.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanders P. R., Winter J. A., Barnason A. R., Rogers S. G., Fraley R. T. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acids Res. 1987 Feb 25;15(4):1543–1558. doi: 10.1093/nar/15.4.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stark D. M., Timmerman K. P., Barry G. F., Preiss J., Kishore G. M. Regulation of the Amount of Starch in Plant Tissues by ADP Glucose Pyrophosphorylase. Science. 1992 Oct 9;258(5080):287–292. doi: 10.1126/science.258.5080.287. [DOI] [PubMed] [Google Scholar]
  27. Terryn N., Arias M. B., Engler G., Tiré C., Villarroel R., Van Montagu M., Inzé D. rha1, a gene encoding a small GTP binding protein from Arabidopsis, is expressed primarily in developing guard cells. Plant Cell. 1993 Dec;5(12):1761–1769. doi: 10.1105/tpc.5.12.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tsai C. Y., Nelson O. E. Starch-deficient maize mutant lacking adenosine dephosphate glucose pyrophosphorylase activity. Science. 1966 Jan 21;151(3708):341–343. doi: 10.1126/science.151.3708.341. [DOI] [PubMed] [Google Scholar]
  29. Villand P., Aalen R., Olsen O. A., Lüthi E., Lönneborg A., Kleczkowski L. A. PCR amplification and sequences of cDNA clones for the small and large subunits of ADP-glucose pyrophosphorylase from barley tissues. Plant Mol Biol. 1992 Jun;19(3):381–389. doi: 10.1007/BF00023385. [DOI] [PubMed] [Google Scholar]
  30. Villand P., Olsen O. A., Kilian A., Kleczkowski L. A. ADP-Glucose Pyrophosphorylase Large Subunit cDNA from Barley Endosperm. Plant Physiol. 1992 Nov;100(3):1617–1618. doi: 10.1104/pp.100.3.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES