Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Jun;6(6):777–787. doi: 10.1105/tpc.6.6.777

A Model for Seed Transmission of a Plant Virus: Genetic and Structural Analyses of Pea Embryo Invasion by Pea Seed-Borne Mosaic Virus.

D Wang 1, A J Maule 1
PMCID: PMC160477  PMID: 12244258

Abstract

Pea seed-borne mosaic virus (PSbMV), a seed-transmitted virus in pea and other legumes, invades pea embryos early in development. This process is controlled by maternal genes and, in a cultivar that shows no seed transmission, is prevented through the action of multiple host genes segregating as quantitative trait loci. These genes control the ability of PSbMV to spread into and/or multiply in the nonvascular testa tissues, thereby preventing the virus from crossing the boundary between the maternal and progeny tissues. Immunocytochemical and in situ hybridization studies suggested that the virus uses the embryonic suspensor as the route for the direct invasion of the embryo. The programmed degeneration of the suspensor during embryo development may provide a transient window for embryo invasion by the virus and could explain the inverse relationship between the age of the mother plant for virus infection and the extent of virus seed transmission.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Citovsky V., Zambryski P. How do plant virus nucleic acids move through intercellular connections? Bioessays. 1991 Aug;13(8):373–379. doi: 10.1002/bies.950130802. [DOI] [PubMed] [Google Scholar]
  2. Coen E. S., Romero J. M., Doyle S., Elliott R., Murphy G., Carpenter R. floricaula: a homeotic gene required for flower development in antirrhinum majus. Cell. 1990 Dec 21;63(6):1311–1322. doi: 10.1016/0092-8674(90)90426-f. [DOI] [PubMed] [Google Scholar]
  3. Deom C. M., Lapidot M., Beachy R. N. Plant virus movement proteins. Cell. 1992 Apr 17;69(2):221–224. doi: 10.1016/0092-8674(92)90403-y. [DOI] [PubMed] [Google Scholar]
  4. Johansen E., Rasmussen O. F., Heide M., Borkhardt B. The complete nucleotide sequence of pea seed-borne mosaic virus RNA. J Gen Virol. 1991 Nov;72(Pt 11):2625–2632. doi: 10.1099/0022-1317-72-11-2625. [DOI] [PubMed] [Google Scholar]
  5. Lebacq A. M., Ritter M. A. B-cell precursors in early chicken embryos. Immunology. 1979 May;37(1):123–134. [PMC free article] [PubMed] [Google Scholar]
  6. Meinke D. W. Perspectives on Genetic Analysis of Plant Embryogenesis. Plant Cell. 1991 Sep;3(9):857–866. doi: 10.1105/tpc.3.9.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Roholl P. J., Dullens H. F., Kleijne J., Dubbink E. J., Den Otter W. Acid ethanol fixation and polyester wax embedding combines preservation of antigenic determinants with good morphology and enables simultaneous bromodeoxyuridine (BrdU) labeling. Biotech Histochem. 1991;1(2):55–62. doi: 10.3109/10520299109110551. [DOI] [PubMed] [Google Scholar]
  8. Wang D., Hayes I. M., Maule A. J. Procedures for the efficient purification of pea seed-borne mosaic virus and its genomic RNA. J Virol Methods. 1992 Mar;36(3):223–230. doi: 10.1016/0166-0934(92)90053-g. [DOI] [PubMed] [Google Scholar]
  9. Wang D., Maule A. J. Early embryo invasion as a determinant in pea of the seed transmission of pea seed-borne mosaic virus. J Gen Virol. 1992 Jul;73(Pt 7):1615–1620. doi: 10.1099/0022-1317-73-7-1615. [DOI] [PubMed] [Google Scholar]
  10. Wolf S., Deom C. M., Beachy R. N., Lucas W. J. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science. 1989 Oct 20;246(4928):377–379. doi: 10.1126/science.246.4928.377. [DOI] [PubMed] [Google Scholar]
  11. Yeung E. C., Meinke D. W. Embryogenesis in Angiosperms: Development of the Suspensor. Plant Cell. 1993 Oct;5(10):1371–1381. doi: 10.1105/tpc.5.10.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES