Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Jul;6(7):947–958. doi: 10.1105/tpc.6.7.947

A new family of zinc finger proteins in petunia: structure, DNA sequence recognition, and floral organ-specific expression.

H Takatsuji 1, N Nakamura 1, Y Katsumoto 1
PMCID: PMC160491  PMID: 8069106

Abstract

We have previously cloned a gene for a zinc finger protein (EPF1) that is expressed specifically in petals and interacts with the promoter region of the 5-enolpyruvylshikimate-3-phosphate synthase gene in petunia. In an attempt to isolate genes encoding additional factors that interact with this promoter, we cloned four novel genes encoding zinc finger proteins (EPF2-5a, EPF2-5b, EPF2-4, and EPF2-7). Sequence analyses revealed that overall similarity between the EPF1 and the EPF2 protein family, except in the zinc finger motifs and the basic amino acid cluster, was very low, suggesting that the two groups belong to different subfamilies. DNA binding specificities of EPF1, EPF2-5, and EPF2-4 were very similar, as expected from the conserved zinc finger motifs. However, EPF2-7 showed no binding to the probes tested in spite of having the conserved motifs. DNA binding studies using a series of spacing mutant probes suggested a binding mechanism in which the EPF proteins recognize spacings in target DNA. RNA gel blot analyses and histochemical analyses with a promoter and beta-glucuronidase fusion revealed that expression of the EPF2-5 gene (EPF2-5) was petal and stamen specific. Expression of the EPF2-7 gene (EPF2-7) was sepal and petal specific and localized in vascular tissues. The preferential expression in two adjacent floral organs raises the possibility that these genes are downstream transcription factors of floral homeotic genes.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angenent G. C., Busscher M., Franken J., Mol J. N., van Tunen A. J. Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell. 1992 Aug;4(8):983–993. doi: 10.1105/tpc.4.8.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benfey P. N., Chua N. H. Regulated genes in transgenic plants. Science. 1989 Apr 14;244(4901):174–181. doi: 10.1126/science.244.4901.174. [DOI] [PubMed] [Google Scholar]
  3. Benfey P. N., Takatsuji H., Ren L., Shah D. M., Chua N. H. Sequence Requirements of the 5-Enolpyruvylshikimate-3-phosphate Synthase 5[prime]-Upstream Region for Tissue-Specific Expression in Flowers and Seedlings. Plant Cell. 1990 Sep;2(9):849–856. doi: 10.1105/tpc.2.9.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradley D., Carpenter R., Sommer H., Hartley N., Coen E. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell. 1993 Jan 15;72(1):85–95. doi: 10.1016/0092-8674(93)90052-r. [DOI] [PubMed] [Google Scholar]
  5. Coen E. S., Meyerowitz E. M. The war of the whorls: genetic interactions controlling flower development. Nature. 1991 Sep 5;353(6339):31–37. doi: 10.1038/353031a0. [DOI] [PubMed] [Google Scholar]
  6. Fasano L., Röder L., Coré N., Alexandre E., Vola C., Jacq B., Kerridge S. The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs. Cell. 1991 Jan 11;64(1):63–79. doi: 10.1016/0092-8674(91)90209-h. [DOI] [PubMed] [Google Scholar]
  7. Hanas J. S., Hazuda D. J., Bogenhagen D. F., Wu F. Y., Wu C. W. Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene. J Biol Chem. 1983 Dec 10;258(23):14120–14125. [PubMed] [Google Scholar]
  8. Jack T., Brockman L. L., Meyerowitz E. M. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell. 1992 Feb 21;68(4):683–697. doi: 10.1016/0092-8674(92)90144-2. [DOI] [PubMed] [Google Scholar]
  9. Jacobs G. H. Determination of the base recognition positions of zinc fingers from sequence analysis. EMBO J. 1992 Dec;11(12):4507–4517. doi: 10.1002/j.1460-2075.1992.tb05552.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kush A., Brunelle A., Shevell D., Chua N. H. The cDNA sequence of two MADS box proteins in Petunia. Plant Physiol. 1993 Jul;102(3):1051–1052. doi: 10.1104/pp.102.3.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ma H., Yanofsky M. F., Meyerowitz E. M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 1991 Mar;5(3):484–495. doi: 10.1101/gad.5.3.484. [DOI] [PubMed] [Google Scholar]
  12. Nardelli J., Gibson T. J., Vesque C., Charnay P. Base sequence discrimination by zinc-finger DNA-binding domains. Nature. 1991 Jan 10;349(6305):175–178. doi: 10.1038/349175a0. [DOI] [PubMed] [Google Scholar]
  13. När A. M., Boutin J. M., Lipkin S. M., Yu V. C., Holloway J. M., Glass C. K., Rosenfeld M. G. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell. 1991 Jun 28;65(7):1267–1279. doi: 10.1016/0092-8674(91)90021-p. [DOI] [PubMed] [Google Scholar]
  14. Omichinski J. G., Clore G. M., Schaad O., Felsenfeld G., Trainor C., Appella E., Stahl S. J., Gronenborn A. M. NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science. 1993 Jul 23;261(5120):438–446. doi: 10.1126/science.8332909. [DOI] [PubMed] [Google Scholar]
  15. Pays E., Murphy N. B. DNA-binding fingers encoded by a trypanosome retroposon. J Mol Biol. 1987 Sep 5;197(1):147–148. doi: 10.1016/0022-2836(87)90617-6. [DOI] [PubMed] [Google Scholar]
  16. Sakamoto A., Minami M., Huh G. H., Iwabuchi M. The putative zinc-finger protein WZF1 interacts with a cis-acting element of wheat histone genes. Eur J Biochem. 1993 Nov 1;217(3):1049–1056. doi: 10.1111/j.1432-1033.1993.tb18336.x. [DOI] [PubMed] [Google Scholar]
  17. Takatsuji H., Mori M., Benfey P. N., Ren L., Chua N. H. Characterization of a zinc finger DNA-binding protein expressed specifically in Petunia petals and seedlings. EMBO J. 1992 Jan;11(1):241–249. doi: 10.1002/j.1460-2075.1992.tb05047.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Theill L. E., Castrillo J. L., Wu D., Karin M. Dissection of functional domains of the pituitary-specific transcription factor GHF-1. Nature. 1989 Dec 21;342(6252):945–948. doi: 10.1038/342945a0. [DOI] [PubMed] [Google Scholar]
  19. Tröbner W., Ramirez L., Motte P., Hue I., Huijser P., Lönnig W. E., Saedler H., Sommer H., Schwarz-Sommer Z. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 1992 Dec;11(13):4693–4704. doi: 10.1002/j.1460-2075.1992.tb05574.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Umesono K., Evans R. M. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell. 1989 Jun 30;57(7):1139–1146. doi: 10.1016/0092-8674(89)90051-2. [DOI] [PubMed] [Google Scholar]
  21. Umesono K., Murakami K. K., Thompson C. C., Evans R. M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991 Jun 28;65(7):1255–1266. doi: 10.1016/0092-8674(91)90020-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wu R., Wu T., Ray A. Adaptors, linkers, and methylation. Methods Enzymol. 1987;152:343–349. doi: 10.1016/0076-6879(87)52041-9. [DOI] [PubMed] [Google Scholar]
  23. Yanofsky M. F., Ma H., Bowman J. L., Drews G. N., Feldmann K. A., Meyerowitz E. M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990 Jul 5;346(6279):35–39. doi: 10.1038/346035a0. [DOI] [PubMed] [Google Scholar]
  24. van der Krol A. R., Brunelle A., Tsuchimoto S., Chua N. H. Functional analysis of petunia floral homeotic MADS box gene pMADS1. Genes Dev. 1993 Jul;7(7A):1214–1228. doi: 10.1101/gad.7.7a.1214. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES