Abstract
A cDNA clone representing a novel cell wall protein was isolated from a tomato cDNA library. The deduced amino acid sequence shows that the encoded protein is very small (88 amino acids), contains an N-terminal hydrophobic signal peptide, and is enriched in lysine and tyrosine. We have designated this protein TLRP for tyrosine- and lysine-rich protein. RNA gel blot hybridization identified TLRP transcripts constitutively present in roots, stems, and leaves from tomato plants. The encoded protein seems to be highly insolubilized in the cell wall, and we present evidence that this protein is specifically localized in the modified secondary cell walls of the xylem and in cells of the sclerenchyma. In addition, the protein is localized in the protective periderm layer of the growing root. The highly localized deposition in cells destined to give support and protection to the plant indicates that this cell wall protein alone and/or in collaboration with other cell wall structural proteins may have a specialized structural function by mechanically strengthening the walls.
Full Text
The Full Text of this article is available as a PDF (4.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper J. B., Varner J. E. Cross-linking of soluble extensin in isolated cell walls. Plant Physiol. 1984 Oct;76(2):414–417. doi: 10.1104/pp.76.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denecke J., De Rycke R., Botterman J. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J. 1992 Jun;11(6):2345–2355. doi: 10.1002/j.1460-2075.1992.tb05294.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ertl H., Hallmann A., Wenzl S., Sumper M. A novel extensin that may organize extracellular matrix biogenesis in Volvox carteri. EMBO J. 1992 Jun;11(6):2055–2062. doi: 10.1002/j.1460-2075.1992.tb05263.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fry S. C. Isodityrosine, a new cross-linking amino acid from plant cell-wall glycoprotein. Biochem J. 1982 May 15;204(2):449–455. doi: 10.1042/bj2040449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
- Hong J. C., Nagao R. T., Key J. L. Developmentally regulated expression of soybean proline-rich cell wall protein genes. Plant Cell. 1989 Sep;1(9):937–943. doi: 10.1105/tpc.1.9.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Josè-Estanyol M., Ruiz-Avila L., Puigdomènech P. A maize embryo-specific gene encodes a proline-rich and hydrophobic protein. Plant Cell. 1992 Apr;4(4):413–423. doi: 10.1105/tpc.4.4.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaldenhoff R., Richter G. Sequence of cDNA for a novel light-induced glycine-rich protein. Nucleic Acids Res. 1989 Apr 11;17(7):2853–2853. doi: 10.1093/nar/17.7.2853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller B., Lamb C. J. Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes Dev. 1989 Oct;3(10):1639–1646. doi: 10.1101/gad.3.10.1639. [DOI] [PubMed] [Google Scholar]
- Keller B., Templeton M. D., Lamb C. J. Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1529–1533. doi: 10.1073/pnas.86.5.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lamb C. J., Lawton M. A., Dron M., Dixon R. A. Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell. 1989 Jan 27;56(2):215–224. doi: 10.1016/0092-8674(89)90894-5. [DOI] [PubMed] [Google Scholar]
- Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
- Ryser U., Keller B. Ultrastructural Localization of a Bean Glycine-Rich Protein in Unlignified Primary Walls of Protoxylem Cells. Plant Cell. 1992 Jul;4(7):773–783. doi: 10.1105/tpc.4.7.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Showalter A. M. Structure and function of plant cell wall proteins. Plant Cell. 1993 Jan;5(1):9–23. doi: 10.1105/tpc.5.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Showalter A. M., Zhou J., Rumeau D., Worst S. G., Varner J. E. Tomato extensin and extensin-like cDNAs: structure and expression in response to wounding. Plant Mol Biol. 1991 Apr;16(4):547–565. doi: 10.1007/BF00023421. [DOI] [PubMed] [Google Scholar]
- Tornero P., Conejero V., Vera P. A gene encoding a novel isoform of the PR-1 protein family from tomato is induced upon viroid infection. Mol Gen Genet. 1994 Apr;243(1):47–53. doi: 10.1007/BF00283875. [DOI] [PubMed] [Google Scholar]
- Vera P., Tornero P., Conejero V. Cloning and expression analysis of a viroid-induced peroxidase from tomato plants. Mol Plant Microbe Interact. 1993 Nov-Dec;6(6):790–794. [PubMed] [Google Scholar]
- Vera P., Yago J. H., Conejero V. Immunogold localization of the citrus exocortis viroid-induced pathogenesis-related proteinase p69 in tomato leaves. Plant Physiol. 1989 Sep;91(1):119–123. doi: 10.1104/pp.91.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang H., Wu H. M., Cheung A. Y. Development and Pollination Regulated Accumulation and Glycosylation of a Stylar Transmitting Tissue-Specific Proline-Rich Protein. Plant Cell. 1993 Nov;5(11):1639–1650. doi: 10.1105/tpc.5.11.1639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyatt R. E., Nagao R. T., Key J. L. Patterns of soybean proline-rich protein gene expression. Plant Cell. 1992 Jan;4(1):99–110. doi: 10.1105/tpc.4.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ye Z. H., Varner J. E. Tissue-Specific Expression of Cell Wall Proteins in Developing Soybean Tissues. Plant Cell. 1991 Jan;3(1):23–37. doi: 10.1105/tpc.3.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Kan J. A., Cornelissen B. J., Bol J. F. A virus-inducible tobacco gene encoding a glycine-rich protein shares putative regulatory elements with the ribulose bisphosphate carboxylase small subunit gene. Mol Plant Microbe Interact. 1988 Mar;1(3):107–112. doi: 10.1094/mpmi-1-107. [DOI] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]