Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Aug;6(8):1087–1098. doi: 10.1105/tpc.6.8.1087

A dominant negative mutant of PG13 suppresses transcription from a cauliflower mosaic virus 35S truncated promoter in transgenic tobacco plants.

M Rieping 1, M Fritz 1, S Prat 1, C Gatz 1
PMCID: PMC160503  PMID: 7919980

Abstract

TGA1a and PG13 constitute a family of tobacco basic leucine zipper (bZIP) proteins that bind to activating sequence-1 (as-1), which is one of the multiple regulatory cis elements of the cauliflower mosaic virus (CaMV) 35S promoter. After truncation of the CaMV 35S promoter down to position -90 (CaMV 35S [-90] promoter), transcription stringently depends on the presence of as-1, which is recognized by nuclear DNA binding proteins called ASF-1. The role of the TGA1a/PG13 bZIP family in the formation of ASF-1 and in transcriptional activation of the CaMV 35S (-90) promoter has not yet been demonstrated in vivo. We constructed transgenic tobacco plants expressing a mutant of potato PG13, which lacks its wild-type DNA binding domain. This mutant acts as a trans-dominant inhibitor of ASF-1 formation and of expression from the CaMV 35S (-90) promoter, showing that PG13 can specifically interact with proteins necessary for these processes. Although we did not observe any other obvious phenotypic changes, these transgenic plants are a potentially valuable tool in identifying whether TGA1a and PG13 are involved in controlling promoters encoded in the plant genome.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker D. Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acids Res. 1990 Jan 11;18(1):203–203. doi: 10.1093/nar/18.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benfey P. N., Chua N. H. The Cauliflower Mosaic Virus 35S Promoter: Combinatorial Regulation of Transcription in Plants. Science. 1990 Nov 16;250(4983):959–966. doi: 10.1126/science.250.4983.959. [DOI] [PubMed] [Google Scholar]
  3. Bouchez D., Tokuhisa J. G., Llewellyn D. J., Dennis E. S., Ellis J. G. The ocs-element is a component of the promoters of several T-DNA and plant viral genes. EMBO J. 1989 Dec 20;8(13):4197–4204. doi: 10.1002/j.1460-2075.1989.tb08605.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Cooke R. The figwort mosaic virus gene VI promoter region contains a sequence highly homologous to the octopine synthase (ocs) enhancer element. Plant Mol Biol. 1990 Jul;15(1):181–182. doi: 10.1007/BF00017741. [DOI] [PubMed] [Google Scholar]
  6. Deblaere R., Bytebier B., De Greve H., Deboeck F., Schell J., Van Montagu M., Leemans J. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 1985 Jul 11;13(13):4777–4788. doi: 10.1093/nar/13.13.4777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ebert P. R., Ha S. B., An G. Identification of an essential upstream element in the nopaline synthase promoter by stable and transient assays. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5745–5749. doi: 10.1073/pnas.84.16.5745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellis J. G., Tokuhisa J. G., Llewellyn D. J., Bouchez D., Singh K., Dennis E. S., Peacock W. J. Does the ocs-element occur as a functional component of the promoters of plant genes? Plant J. 1993 Sep;4(3):433–443. doi: 10.1046/j.1365-313x.1993.04030433.x. [DOI] [PubMed] [Google Scholar]
  9. Feltkamp D., Masterson R., Starke J., Rosahl S. Analysis of the involvement of ocs-like bZip-binding elements in the differential strength of the bidirectional mas1'2' promoter. Plant Physiol. 1994 May;105(1):259–268. doi: 10.1104/pp.105.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foley R. C., Grossman C., Ellis J. G., Llewellyn D. J., Dennis E. S., Peacock W. J., Singh K. B. Isolation of a maize bZIP protein subfamily: candidates for the ocs-element transcription factor. Plant J. 1993 May;3(5):669–679. [PubMed] [Google Scholar]
  11. Frohberg C., Heins L., Gatz C. Characterization of the interaction of plant transcription factors using a bacterial repressor protein. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10470–10474. doi: 10.1073/pnas.88.23.10470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fromm H., Katagiri F., Chua N. H. An octopine synthase enhancer element directs tissue-specific expression and binds ASF-1, a factor from tobacco nuclear extracts. Plant Cell. 1989 Oct;1(10):977–984. doi: 10.1105/tpc.1.10.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fromm H., Katagiri F., Chua N. H. The tobacco transcription activator TGA1a binds to a sequence in the 5' upstream region of a gene encoding a TGA1a-related protein. Mol Gen Genet. 1991 Oct;229(2):181–188. doi: 10.1007/BF00272154. [DOI] [PubMed] [Google Scholar]
  14. Gatz C., Kaiser A., Wendenburg R. Regulation of a modified CaMV 35S promoter by the Tn10-encoded Tet repressor in transgenic tobacco. Mol Gen Genet. 1991 Jun;227(2):229–237. doi: 10.1007/BF00259675. [DOI] [PubMed] [Google Scholar]
  15. Gatz C., Katzek J., Prat S., Heyer A. Repression of the CaMV 35S promoter by the octopine synthase enhancer element. FEBS Lett. 1991 Nov 18;293(1-2):175–178. doi: 10.1016/0014-5793(91)81180-g. [DOI] [PubMed] [Google Scholar]
  16. Heyer A., Gatz C. Isolation and characterization of a cDNA-clone coding for potato type A phytochrome. Plant Mol Biol. 1992 Feb;18(3):535–544. doi: 10.1007/BF00040669. [DOI] [PubMed] [Google Scholar]
  17. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Katagiri F., Seipel K., Chua N. H. Identification of a novel dimer stabilization region in a plant bZIP transcription activator. Mol Cell Biol. 1992 Nov;12(11):4809–4816. doi: 10.1128/mcb.12.11.4809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Katagiri F., Yamazaki K., Horikoshi M., Roeder R. G., Chua N. H. A plant DNA-binding protein increases the number of active preinitiation complexes in a human in vitro transcription system. Genes Dev. 1990 Nov;4(11):1899–1909. doi: 10.1101/gad.4.11.1899. [DOI] [PubMed] [Google Scholar]
  20. Kawata T., Imada T., Shiraishi H., Okada K., Shimura Y., Iwabuchi M. A cDNA clone encoding HBP-1b homologue in Arabidopsis thaliana. Nucleic Acids Res. 1992 Mar 11;20(5):1141–1141. doi: 10.1093/nar/20.5.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lam E., Benfey P. N., Gilmartin P. M., Fang R. X., Chua N. H. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7890–7894. doi: 10.1073/pnas.86.20.7890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lam E., Katagiri F., Chua N. H. Plant nuclear factor ASF-1 binds to an essential region of the nopaline synthase promoter. J Biol Chem. 1990 Jun 15;265(17):9909–9913. [PubMed] [Google Scholar]
  23. Lamb P., McKnight S. L. Diversity and specificity in transcriptional regulation: the benefits of heterotypic dimerization. Trends Biochem Sci. 1991 Nov;16(11):417–422. doi: 10.1016/0968-0004(91)90167-t. [DOI] [PubMed] [Google Scholar]
  24. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  25. Liu X., Lam E. Two binding sites for the plant transcription factor ASF-1 can respond to auxin treatments in transgenic tobacco. J Biol Chem. 1994 Jan 7;269(1):668–675. [PubMed] [Google Scholar]
  26. Medberry S. L., Lockhart B. E., Olszewski N. E. The Commelina yellow mottle virus promoter is a strong promoter in vascular and reproductive tissues. Plant Cell. 1992 Feb;4(2):185–192. doi: 10.1105/tpc.4.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meier I., Gruissem W. Novel conserved sequence motifs in plant G-box binding proteins and implications for interactive domains. Nucleic Acids Res. 1994 Feb 11;22(3):470–478. doi: 10.1093/nar/22.3.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oeda K., Salinas J., Chua N. H. A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J. 1991 Jul;10(7):1793–1802. doi: 10.1002/j.1460-2075.1991.tb07704.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oertel-Buchheit P., Lamerichs R. M., Schnarr M., Granger-Schnarr M. Genetic analysis of the LexA repressor: isolation and characterization of LexA(Def) mutant proteins. Mol Gen Genet. 1990 Aug;223(1):40–48. doi: 10.1007/BF00315795. [DOI] [PubMed] [Google Scholar]
  30. Prat S., Willmitzer L., Sánchez-Serrano J. J. Nuclear proteins binding to a cauliflower mosaic virus 35S truncated promoter. Mol Gen Genet. 1989 Jun;217(2-3):209–214. doi: 10.1007/BF02464883. [DOI] [PubMed] [Google Scholar]
  31. Ptashne M. How eukaryotic transcriptional activators work. Nature. 1988 Oct 20;335(6192):683–689. doi: 10.1038/335683a0. [DOI] [PubMed] [Google Scholar]
  32. Ransone L. J., Visvader J., Wamsley P., Verma I. M. Trans-dominant negative mutants of Fos and Jun. Proc Natl Acad Sci U S A. 1990 May;87(10):3806–3810. doi: 10.1073/pnas.87.10.3806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rosahl S., Schell J., Willmitzer L. Expression of a tuber-specific storage protein in transgenic tobacco plants: demonstration of an esterase activity. EMBO J. 1987 May;6(5):1155–1159. doi: 10.1002/j.1460-2075.1987.tb02348.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Takahashi Y., Kuroda H., Tanaka T., Machida Y., Takebe I., Nagata T. Isolation of an auxin-regulated gene cDNA expressed during the transition from G0 to S phase in tobacco mesophyll protoplasts. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9279–9283. doi: 10.1073/pnas.86.23.9279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tokuhisa J. G., Singh K., Dennis E. S., Peacock W. J. A DNA-binding protein factor recognizes two binding domains within the octopine synthase enhancer element. Plant Cell. 1990 Mar;2(3):215–224. doi: 10.1105/tpc.2.3.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Unger E., Parsons R. L., Schmidt R. J., Bowen B., Roth B. A. Dominant Negative Mutants of Opaque2 Suppress Transactivation of a 22-kD Zein Promoter by Opaque2 in Maize Endosperm Cells. Plant Cell. 1993 Aug;5(8):831–841. doi: 10.1105/tpc.5.8.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vancanneyt G., Schmidt R., O'Connor-Sanchez A., Willmitzer L., Rocha-Sosa M. Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet. 1990 Jan;220(2):245–250. doi: 10.1007/BF00260489. [DOI] [PubMed] [Google Scholar]
  38. Vervliet G., Holsters M., Teuchy H., Van Montagu M., Schell J. Characterization of different plaque-forming and defective temperate phages in Agrobacterium. J Gen Virol. 1975 Jan;26(1):33–48. doi: 10.1099/0022-1317-26-1-33. [DOI] [PubMed] [Google Scholar]
  39. Weinmann P., Gossen M., Hillen W., Bujard H., Gatz C. A chimeric transactivator allows tetracycline-responsive gene expression in whole plants. Plant J. 1994 Apr;5(4):559–569. doi: 10.1046/j.1365-313x.1994.5040559.x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES