Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Aug;6(8):1135–1143. doi: 10.1105/tpc.6.8.1135

Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme.

V Ling 1, W A Snedden 1, B J Shelp 1, S M Assmann 1
PMCID: PMC160507  PMID: 7919983

Abstract

The identity of a soluble 62-kD Ca(2+)-dependent calmodulin binding protein (CaM-BP) from fava bean seedlings was determined. Using 125I-CaM overlay assays, a class of soluble CaM-BPs was detected in extracts of tissues comprising the axis of 1.5-week-old seedlings, excluding the root tip and emergent leaves. The size of these CaM-BPs was not uniform within all parts of the plant; the apparent molecular masses were 62 kD in roots, 60 kD in stems, and 64 kD in nodules. The root 62-kD CaM-BP was purified, and internal microsequence analysis was performed on the protein. A tryptic peptide derived from the CaM-BP consisted of a 13-residue sequence corresponding to a highly conserved region of glutamate decarboxylase (GAD), an enzyme that catalyzes the alpha-decarboxylation of glutamate to form the stress-related metabolite gamma-aminobutyrate. Activity assays of partially purified, desalted, root GAD revealed a 50% stimulation by the addition of 100 microM Ca2+, a 100% stimulation by the addition of 100 microM Ca2+ plus 100 nM CaM, and no appreciable stimulation by CaM in the absence of added Ca2+. The demonstration that plant GAD is a Ca(2+)-CaM-stimulated enzyme provides a model in which stress-linked metabolism is modulated by a Ca(2+)-mediated signal transduction pathway.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baum G., Chen Y., Arazi T., Takatsuji H., Fromm H. A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis. J Biol Chem. 1993 Sep 15;268(26):19610–19617. [PubMed] [Google Scholar]
  2. Bethke P. C., Jones R. L. Ca2+-Calmodulin Modulates Ion Channel Activity in Storage Protein Vacuoles of Barley Aleurone Cells. Plant Cell. 1994 Feb;6(2):277–285. doi: 10.1105/tpc.6.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braam J., Davis R. W. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell. 1990 Feb 9;60(3):357–364. doi: 10.1016/0092-8674(90)90587-5. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Brady M. J., Palfrey H. C. Rapid and sustained phosphorylation of a calmodulin-binding protein (CaM-BP100) in NGF-treated PC12 cells. J Biol Chem. 1993 Aug 25;268(24):17951–17958. [PubMed] [Google Scholar]
  6. Chen Y. R., Datta N., Roux S. J. Purification and partial characterization of a calmodulin-stimulated nucleoside triphosphatase from pea nuclei. J Biol Chem. 1987 Aug 5;262(22):10689–10694. [PubMed] [Google Scholar]
  7. Crawford L. A., Bown A. W., Breitkreuz K. E., Guinel F. C. The Synthesis of [gamma]-Aminobutyric Acid in Response to Treatments Reducing Cytosolic pH. Plant Physiol. 1994 Mar;104(3):865–871. doi: 10.1104/pp.104.3.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erlander M. G., Tobin A. J. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res. 1991 Mar;16(3):215–226. doi: 10.1007/BF00966084. [DOI] [PubMed] [Google Scholar]
  9. Fisher R. F., Long S. R. Rhizobium--plant signal exchange. Nature. 1992 Jun 25;357(6380):655–660. doi: 10.1038/357655a0. [DOI] [PubMed] [Google Scholar]
  10. Gawienowski M. C., Szymanski D., Perera I. Y., Zielinski R. E. Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs. Plant Mol Biol. 1993 May;22(2):215–225. doi: 10.1007/BF00014930. [DOI] [PubMed] [Google Scholar]
  11. Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. Role of Calcium in Signal Transduction of Commelina Guard Cells. Plant Cell. 1991 Apr;3(4):333–344. doi: 10.1105/tpc.3.4.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gold B. I. Further studies on the role of calcium in the regulation of glutamate decarboxylase activity in brain slices. Neurochem Res. 1983 Feb;8(2):185–191. doi: 10.1007/BF00963919. [DOI] [PubMed] [Google Scholar]
  13. Inatomi K., Slaughter J. C. Glutamate decarboxylase from barley embryos and roots. General properties and the occurrence of three enzymic forms. Biochem J. 1975 Jun;147(3):479–484. doi: 10.1042/bj1470479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jackson F. R. Prokaryotic and eukaryotic pyridoxal-dependent decarboxylases are homologous. J Mol Evol. 1990 Oct;31(4):325–329. doi: 10.1007/BF02101126. [DOI] [PubMed] [Google Scholar]
  15. KULKARNI L., SOHONIE K. Glutamic acid decarboxylase in legumes. Nature. 1956 Oct 27;178(4539):925–925. doi: 10.1038/178925a0. [DOI] [PubMed] [Google Scholar]
  16. Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
  17. Kobayashi Y., Kaufman D. L., Tobin A. J. Glutamic acid decarboxylase cDNA: nucleotide sequence encoding an enzymatically active fusion protein. J Neurosci. 1987 Sep;7(9):2768–2772. doi: 10.1523/JNEUROSCI.07-09-02768.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ling V., Perera I., Zielinski R. E. Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiol. 1991 Aug;96(4):1196–1202. doi: 10.1104/pp.96.4.1196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ling V., Zielinski R. E. Isolation of an Arabidopsis cDNA sequence encoding a 22 kDa calcium-binding protein (CaBP-22) related to calmodulin. Plant Mol Biol. 1993 May;22(2):207–214. doi: 10.1007/BF00014929. [DOI] [PubMed] [Google Scholar]
  20. Maras B., Sweeney G., Barra D., Bossa F., John R. A. The amino acid sequence of glutamate decarboxylase from Escherichia coli. Evolutionary relationship between mammalian and bacterial enzymes. Eur J Biochem. 1992 Feb 15;204(1):93–98. doi: 10.1111/j.1432-1033.1992.tb16609.x. [DOI] [PubMed] [Google Scholar]
  21. Murtaugh T. J., Wright L. S., Siegel F. L. Posttranslational modification of calmodulin in rat brain and pituitary. J Neurochem. 1986 Jul;47(1):164–172. doi: 10.1111/j.1471-4159.1986.tb02845.x. [DOI] [PubMed] [Google Scholar]
  22. Nathan B., Hsu C. C., Bao J., Wu R., Wu J. Y. Purification and characterization of a novel form of brain L-glutamate decarboxylase. A Ca(2+)-dependent peripheral membrane protein. J Biol Chem. 1994 Mar 11;269(10):7249–7254. [PubMed] [Google Scholar]
  23. Neuhaus G., Bowler C., Kern R., Chua N. H. Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell. 1993 Jun 4;73(5):937–952. doi: 10.1016/0092-8674(93)90272-r. [DOI] [PubMed] [Google Scholar]
  24. Oh S. H., Roberts D. M. Analysis of the state of posttranslational calmodulin methylation in developing pea plants. Plant Physiol. 1990 Jul;93(3):880–887. doi: 10.1104/pp.93.3.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Perera I. Y., Zielinski R. E. Structure and expression of the Arabidopsis CaM-3 calmodulin gene. Plant Mol Biol. 1992 Jul;19(4):649–664. doi: 10.1007/BF00026791. [DOI] [PubMed] [Google Scholar]
  26. Rasi-Caldogno F., Carnelli A., De Michelis M. I. Controlled Proteolysis Activates the Plasma Membrane Ca2+ Pump of Higher Plants (A Comparison with the Effect of Calmodulin in Plasma Membrane from Radish Seedlings). Plant Physiol. 1993 Oct;103(2):385–390. doi: 10.1104/pp.103.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roberts D. M., Besl L., Oh S. H., Masterson R. V., Schell J., Stacey G. Expression of a calmodulin methylation mutant affects the growth and development of transgenic tobacco plants. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8394–8398. doi: 10.1073/pnas.89.17.8394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Roberts D. M., Rowe P. M., Siegel F. L., Lukas T. J., Watterson D. M. Trimethyllysine and protein function. Effect of methylation and mutagenesis of lysine 115 of calmodulin on NAD kinase activation. J Biol Chem. 1986 Feb 5;261(4):1491–1494. [PubMed] [Google Scholar]
  29. Snedden W. A., Chung I., Pauls R. H., Bown A. W. Proton/l-Glutamate Symport and the Regulation of Intracellular pH in Isolated Mesophyll Cells. Plant Physiol. 1992 Jun;99(2):665–671. doi: 10.1104/pp.99.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stinemetz C. L., Kuzmanoff K. M., Evans M. L., Jarrett H. W. Correlation between calmodulin activity and gravitropic sensitivity in primary roots of maize. Plant Physiol. 1987;84:1337–1342. doi: 10.1104/pp.84.4.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wallace W., Secor J., Schrader L. E. Rapid Accumulation of gamma-Aminobutyric Acid and Alanine in Soybean Leaves in Response to an Abrupt Transfer to Lower Temperature, Darkness, or Mechanical Manipulation. Plant Physiol. 1984 May;75(1):170–175. doi: 10.1104/pp.75.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ziegenhagen R., Jennissen H. P. Plant and fungus calmodulins are polyubiquitinated at a single site in a Ca2(+)-dependent manner. FEBS Lett. 1990 Oct 29;273(1-2):253–256. doi: 10.1016/0014-5793(90)81097-8. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES