Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Sep;6(9):1311–1317. doi: 10.1105/tpc.6.9.1311

A Light-Dependent Pathway for the Elimination of UV-Induced Pyrimidine (6-4) Pyrimidinone Photoproducts in Arabidopsis.

J J Chen 1, D L Mitchell 1, A B Britt 1
PMCID: PMC160522  PMID: 12244273

Abstract

Light-dependent repair of UV-induced cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidinone dimers (6-4 products) was investigated in an excision repair-deficient Arabidopsis mutant. As previously described, exposure to broad-spectrum lighting was found to greatly enhance the rate of repair of CPDs. We demonstrate that 6-4 products are also efficiently eliminated in a light-dependent manner and that this photoreactivation of 6-4 products occurs independently of the previously described 6-4 product dark repair pathway. The light-dependent repair of both 6-4 products and CPDs occurs in the presence of blue light (435 nm) but not upon exposure to light of longer wavelengths. We also found that high-level expression of the CPD-specific photoreactivating activity in the Arabidopsis seedling requires induction by exposure to light prior to as well as during the period of repair while the 6-4 photoreactivating activity is constitutively expressed. This differential regulation of the photoreactivating activities suggests that the Arabidopsis seedling produces at least two distinct photolyases: one specific for CPDs and the other specific for 6-4 products.

Full Text

The Full Text of this article is available as a PDF (622.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAWDEN F. C., KLECZKOWSKI A. Ultraviolet injury to higher plants counteracted by visible light. Nature. 1952 Jan 19;169(4290):90–91. doi: 10.1038/169090a0. [DOI] [PubMed] [Google Scholar]
  2. Batschauer A. A plant gene for photolyase: an enzyme catalyzing the repair of UV-light-induced DNA damage. Plant J. 1993 Oct;4(4):705–709. doi: 10.1046/j.1365-313x.1993.04040705.x. [DOI] [PubMed] [Google Scholar]
  3. Brash D. E., Franklin W. A., Sancar G. B., Sancar A., Haseltine W. A. Escherichia coli DNA photolyase reverses cyclobutane pyrimidine dimers but not pyrimidine-pyrimidone (6-4) photoproducts. J Biol Chem. 1985 Sep 25;260(21):11438–11441. [PubMed] [Google Scholar]
  4. Britt A. B., Chen J. J., Wykoff D., Mitchell D. A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidinone(6-4) dimers. Science. 1993 Sep 17;261(5128):1571–1574. doi: 10.1126/science.8372351. [DOI] [PubMed] [Google Scholar]
  5. DNA damage and repair in higher plants and their relation to genetic damage. Mutat Res. 1987 Nov;181(1):1–214. [PubMed] [Google Scholar]
  6. Harlow G. R., Jenkins M. E., Pittalwala T. S., Mount D. W. Isolation of uvh1, an Arabidopsis mutant hypersensitive to ultraviolet light and ionizing radiation. Plant Cell. 1994 Feb;6(2):227–235. doi: 10.1105/tpc.6.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hoeijmakers J. H. Nucleotide excision repair I: from E. coli to yeast. Trends Genet. 1993 May;9(5):173–177. doi: 10.1016/0168-9525(93)90164-d. [DOI] [PubMed] [Google Scholar]
  8. Hoeijmakers J. H. Nucleotide excision repair. II: From yeast to mammals. Trends Genet. 1993 Jun;9(6):211–217. doi: 10.1016/0168-9525(93)90121-w. [DOI] [PubMed] [Google Scholar]
  9. Kim S. T., Malhotra K., Smith C. A., Taylor J. S., Sancar A. Characterization of (6-4) photoproduct DNA photolyase. J Biol Chem. 1994 Mar 18;269(11):8535–8540. [PubMed] [Google Scholar]
  10. Matsunaga T., Hatakeyama Y., Ohta M., Mori T., Nikaido O. Establishment and characterization of a monoclonal antibody recognizing the Dewar isomers of (6-4)photoproducts. Photochem Photobiol. 1993 Jun;57(6):934–940. doi: 10.1111/j.1751-1097.1993.tb02952.x. [DOI] [PubMed] [Google Scholar]
  11. Mitchell D. L., Haipek C. A., Clarkson J. M. (6-4)Photoproducts are removed from the DNA of UV-irradiated mammalian cells more efficiently than cyclobutane pyrimidine dimers. Mutat Res. 1985 Jul;143(3):109–112. doi: 10.1016/s0165-7992(85)80018-x. [DOI] [PubMed] [Google Scholar]
  12. Mitchell D. L., Hartman P. S. The regulation of DNA repair during development. Bioessays. 1990 Feb;12(2):74–79. doi: 10.1002/bies.950120205. [DOI] [PubMed] [Google Scholar]
  13. Mitchell D. L., Jen J., Cleaver J. E. Relative induction of cyclobutane dimers and cytosine photohydrates in DNA irradiated in vitro and in vivo with ultraviolet-C and ultraviolet-B light. Photochem Photobiol. 1991 Nov;54(5):741–746. doi: 10.1111/j.1751-1097.1991.tb02084.x. [DOI] [PubMed] [Google Scholar]
  14. Mitchell D. L., Nguyen T. D., Cleaver J. E. Nonrandom induction of pyrimidine-pyrimidone (6-4) photoproducts in ultraviolet-irradiated human chromatin. J Biol Chem. 1990 Apr 5;265(10):5353–5356. [PubMed] [Google Scholar]
  15. Mitchell D. L., Vaughan J. E., Nairn R. S. Inhibition of transient gene expression in Chinese hamster ovary cells by cyclobutane dimers and (6-4) photoproducts in transfected ultraviolet-irradiated plasmid DNA. Plasmid. 1989 Jan;21(1):21–30. doi: 10.1016/0147-619x(89)90083-8. [DOI] [PubMed] [Google Scholar]
  16. Moore P. D., Bose K. K., Rabkin S. D., Strauss B. S. Sites of termination of in vitro DNA synthesis on ultraviolet- and N-acetylaminofluorene-treated phi X174 templates by prokaryotic and eukaryotic DNA polymerases. Proc Natl Acad Sci U S A. 1981 Jan;78(1):110–114. doi: 10.1073/pnas.78.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pang Q., Hays J. B. UV-B-Inducible and Temperature-Sensitive Photoreactivation of Cyclobutane Pyrimidine Dimers in Arabidopsis thaliana. Plant Physiol. 1991 Feb;95(2):536–543. doi: 10.1104/pp.95.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Protić-Sabljić M., Kraemer K. H. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6622–6626. doi: 10.1073/pnas.82.19.6622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SETLOW R. B., SWENSON P. A., CARRIER W. L. THYMINE DIMERS AND INHIBITION OF DNA SYNTHESIS BY ULTRAVIOLET IRRADIATION OF CELLS. Science. 1963 Dec 13;142(3598):1464–1466. doi: 10.1126/science.142.3598.1464. [DOI] [PubMed] [Google Scholar]
  20. Sancar A., Rupp W. D. A novel repair enzyme: UVRABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell. 1983 May;33(1):249–260. doi: 10.1016/0092-8674(83)90354-9. [DOI] [PubMed] [Google Scholar]
  21. Sancar A. Structure and function of DNA photolyase. Biochemistry. 1994 Jan 11;33(1):2–9. doi: 10.1021/bi00167a001. [DOI] [PubMed] [Google Scholar]
  22. Shure M., Wessler S., Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell. 1983 Nov;35(1):225–233. doi: 10.1016/0092-8674(83)90225-8. [DOI] [PubMed] [Google Scholar]
  23. Taylor J. S., Lu H. F., Kotyk J. J. Quantitative conversion of the (6-4) photoproduct of TpdC to its Dewar valence isomer upon exposure to simulated sunlight. Photochem Photobiol. 1990 Feb;51(2):161–167. doi: 10.1111/j.1751-1097.1990.tb01698.x. [DOI] [PubMed] [Google Scholar]
  24. Todo T., Takemori H., Ryo H., Ihara M., Matsunaga T., Nikaido O., Sato K., Nomura T. A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4)photoproducts. Nature. 1993 Jan 28;361(6410):371–374. doi: 10.1038/361371a0. [DOI] [PubMed] [Google Scholar]
  25. Trosko J. E., Mansour V. H. Photoreactivation of ultraviolet light-induced pyrimidine dimers in Ginkgo cells grown in vitro. Mutat Res. 1969 Jan-Feb;7(1):120–121. doi: 10.1016/0027-5107(69)90056-6. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES