Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Oct;6(10):1509–1518. doi: 10.1105/tpc.6.10.1509

The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis.

T P Sun 1, Y Kamiya 1
PMCID: PMC160538  PMID: 7994182

Abstract

The first committed step in the gibberellin (GA) biosynthetic pathway is the conversion of geranylgeranyl pyrophosphate (GGPP) through copalyl pyrophosphate (CPP) to ent-kaurene catalyzed by ent-kaurene synthetases A and B. The ga1 mutants of Arabidopsis are gibberellin-responsive male-sterile dwarfs. Biochemical studies indicate that biosynthesis of GAs in the ga1 mutants is blocked prior to the synthesis of ent-kaurene. The GA1 locus was cloned previously using the technique of genomic subtraction. Here, we report the isolation of a nearly full-length GA1 cDNA clone from wild-type Arabidopsis. This cDNA clone encodes an active protein and is able to complement the dwarf phenotype in ga1-3 mutants by Agrobacterium-mediated transformation. In Escherichia coli cells that express both the Arabidopsis GA1 gene and the Erwinia uredovora gene encoding GGPP synthase, CPP was accumulated. This result indicates that the GA1 gene encodes the enzyme ent-kaurene synthetase A, which catalyzes the conversion of GGPP to CPP. Subcellular localization of the GA1 protein was studied using 35S-labeled GA1 protein and isolated pea chloroplasts. The results showed that the GA1 protein is imported into and processed in pea chloroplasts in vitro.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carrington J. C., Freed D. D. Cap-independent enhancement of translation by a plant potyvirus 5' nontranslated region. J Virol. 1990 Apr;64(4):1590–1597. doi: 10.1128/jvi.64.4.1590-1597.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chung C. H., Coolbaugh R. C. ent-Kaurene Biosynthesis in Cell-Free Extracts of Excised Parts of Tall and Dwarf Pea Seedlings. Plant Physiol. 1986 Feb;80(2):544–548. doi: 10.1104/pp.80.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Colby S. M., Alonso W. R., Katahira E. J., McGarvey D. J., Croteau R. 4S-limonene synthase from the oil glands of spearmint (Mentha spicata). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem. 1993 Nov 5;268(31):23016–23024. [PubMed] [Google Scholar]
  6. Giraudat J., Hauge B. M., Valon C., Smalle J., Parcy F., Goodman H. M. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell. 1992 Oct;4(10):1251–1261. doi: 10.1105/tpc.4.10.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grossman A. R., Bartlett S. G., Schmidt G. W., Mullet J. E., Chua N. H. Optimal conditions for post-translational uptake of proteins by isolated chloroplasts. In vitro synthesis and transport of plastocyanin, ferredoxin-NADP+ oxidoreductase, and fructose-1,6-bisphosphatase. J Biol Chem. 1982 Feb 10;257(3):1558–1563. [PubMed] [Google Scholar]
  8. Jennings S. M., Tsay Y. H., Fisch T. M., Robinson G. W. Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6038–6042. doi: 10.1073/pnas.88.14.6038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kohorn B. D., Harel E., Chitnis P. R., Thornber J. P., Tobin E. M. Functional and mutational analysis of the light-harvesting chlorophyll a/b protein of thylakoid membranes. J Cell Biol. 1986 Mar;102(3):972–981. doi: 10.1083/jcb.102.3.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krainer A. R., Maniatis T., Ruskin B., Green M. R. Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell. 1984 Apr;36(4):993–1005. doi: 10.1016/0092-8674(84)90049-7. [DOI] [PubMed] [Google Scholar]
  11. Restrepo M. A., Freed D. D., Carrington J. C. Nuclear transport of plant potyviral proteins. Plant Cell. 1990 Oct;2(10):987–998. doi: 10.1105/tpc.2.10.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sandmann G., Misawa N. New functional assignment of the carotenogenic genes crtB and crtE with constructs of these genes from Erwinia species. FEMS Microbiol Lett. 1992 Jan 15;69(3):253–257. doi: 10.1016/0378-1097(92)90656-9. [DOI] [PubMed] [Google Scholar]
  13. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  14. Sun Tp., Goodman H. M., Ausubel F. M. Cloning the Arabidopsis GA1 Locus by Genomic Subtraction. Plant Cell. 1992 Feb;4(2):119–128. doi: 10.1105/tpc.4.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zeevaart J. A., Gage D. A. ent-kaurene biosynthesis is enhanced by long photoperiods in the long-day plants Spinacia oleracea L. and Agrostemma githago L. Plant Physiol. 1993 Jan;101(1):25–29. doi: 10.1104/pp.101.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES