Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Nov;6(11):1553–1565. doi: 10.1105/tpc.6.11.1553

Arabidopsis TCH3 encodes a novel Ca2+ binding protein and shows environmentally induced and tissue-specific regulation.

M L Sistrunk 1, D M Antosiewicz 1, M M Purugganan 1, J Braam 1
PMCID: PMC160543  PMID: 7827491

Abstract

The Arabidopsis touch (TCH) genes are up-regulated in response to various environmental stimuli, including touch, wind, and darkness. Previously, it was determined that TCH1 encodes a calmodulin; TCH2 and TCH3 encode calmodulin-related proteins. Here, we present the sequence and genomic organization of TCH3. TCH3 is composed of three repeats; remarkably, the first two repeats share 94% sequence identity, including introns that are 99% identical. The conceptual TCH3 product is 58 to 60% identical to known Arabidopsis calmodulins; however, unlike calmodulin, which has four Ca2+ binding sites, TCH3 has six potential Ca2+ binding domains. TCH3 is capable of binding Ca2+, as demonstrated by a Ca(2+)-specific shift in electrophoretic mobility. 5' Fragments of the TCH3 locus, when fused to the beta-glucuronidase (GUS) reporter gene, are sufficient to confer inducibility of expression following stimulation of plants with touch or darkness. These TCH3 sequences also direct expression to growing regions of roots, vascular tissue, root/shoot junctions, trichomes, branch points of the shoot, and regions of siliques and flowers. The pattern of expression of the TCH3/GUS reporter genes most likely reflects expression of the native TCH3 gene, because immunostaining of the TCH3 protein shows similar localization. The tissue-specific expression of TCH3 suggests that expression may be regulated not only by externally applied mechanical stimuli but also by mechanical stresses generated during development. Consequently, TCH3 may perform a Ca(2+)-modulated function involved in generating changes in cells and/or tissues that result in greater strength or flexibility.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bartling D., Bülter H., Weiler E. W. Arabidopsis thaliana cDNA encoding a novel member of the EF-hand superfamily of calcium-binding proteins. Plant Physiol. 1993 Jul;102(3):1059–1060. doi: 10.1104/pp.102.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boguski M. S., Lowe T. M., Tolstoshev C. M. dbEST--database for "expressed sequence tags". Nat Genet. 1993 Aug;4(4):332–333. doi: 10.1038/ng0893-332. [DOI] [PubMed] [Google Scholar]
  4. Braam J., Davis R. W. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell. 1990 Feb 9;60(3):357–364. doi: 10.1016/0092-8674(90)90587-5. [DOI] [PubMed] [Google Scholar]
  5. Braam J. Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3213–3216. doi: 10.1073/pnas.89.8.3213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burgess W. H., Jemiolo D. K., Kretsinger R. H. Interaction of calcium and calmodulin in the presence of sodium dodecyl sulfate. Biochim Biophys Acta. 1980 Jun 26;623(2):257–270. doi: 10.1016/0005-2795(80)90254-8. [DOI] [PubMed] [Google Scholar]
  7. Chandra A., Upadhyaya K. C. Structure and organization of a novel calmodulin gene of Arabidopsis thaliana. Cell Mol Biol Res. 1993;39(5):509–516. [PubMed] [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gawienowski M. C., Szymanski D., Perera I. Y., Zielinski R. E. Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs. Plant Mol Biol. 1993 May;22(2):215–225. doi: 10.1007/BF00014930. [DOI] [PubMed] [Google Scholar]
  10. Geiser J. R., van Tuinen D., Brockerhoff S. E., Neff M. M., Davis T. N. Can calmodulin function without binding calcium? Cell. 1991 Jun 14;65(6):949–959. doi: 10.1016/0092-8674(91)90547-c. [DOI] [PubMed] [Google Scholar]
  11. Guo L. H., Stepień P. P., Tso J. Y., Brousseau R., Narang S., Thomas D. Y., Wu R. Synthesis of human insulin gene. VIII. Construction of expression vectors for fused proinsulin production in Escherichia coli. Gene. 1984 Jul-Aug;29(1-2):251–254. doi: 10.1016/0378-1119(84)90186-0. [DOI] [PubMed] [Google Scholar]
  12. Heizmann C. W., Hunziker W. Intracellular calcium-binding proteins: more sites than insights. Trends Biochem Sci. 1991 Mar;16(3):98–103. doi: 10.1016/0968-0004(91)90041-s. [DOI] [PubMed] [Google Scholar]
  13. Hülskamp M., Misŕa S., Jürgens G. Genetic dissection of trichome cell development in Arabidopsis. Cell. 1994 Feb 11;76(3):555–566. doi: 10.1016/0092-8674(94)90118-x. [DOI] [PubMed] [Google Scholar]
  14. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
  16. Knight M. R., Smith S. M., Trewavas A. J. Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4967–4971. doi: 10.1073/pnas.89.11.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kretsinger R. H. Calcium coordination and the calmodulin fold: divergent versus convergent evolution. Cold Spring Harb Symp Quant Biol. 1987;52:499–510. doi: 10.1101/sqb.1987.052.01.057. [DOI] [PubMed] [Google Scholar]
  18. Ling V., Perera I., Zielinski R. E. Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiol. 1991 Aug;96(4):1196–1202. doi: 10.1104/pp.96.4.1196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ling V., Zielinski R. E. Isolation of an Arabidopsis cDNA sequence encoding a 22 kDa calcium-binding protein (CaBP-22) related to calmodulin. Plant Mol Biol. 1993 May;22(2):207–214. doi: 10.1007/BF00014929. [DOI] [PubMed] [Google Scholar]
  20. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McKeon T. A., Lyman M. L. Calcium ion improves electrophoretic transfer of calmodulin and other small proteins. Anal Biochem. 1991 Feb 15;193(1):125–130. doi: 10.1016/0003-2697(91)90051-t. [DOI] [PubMed] [Google Scholar]
  22. Moncrief N. D., Kretsinger R. H., Goodman M. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol. 1990 Jun;30(6):522–562. doi: 10.1007/BF02101108. [DOI] [PubMed] [Google Scholar]
  23. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Perera I. Y., Zielinski R. E. Structure and expression of the Arabidopsis CaM-3 calmodulin gene. Plant Mol Biol. 1992 Jul;19(4):649–664. doi: 10.1007/BF00026791. [DOI] [PubMed] [Google Scholar]
  25. Rasmussen C. D., Means R. L., Lu K. P., May G. S., Means A. R. Characterization and expression of the unique calmodulin gene of Aspergillus nidulans. J Biol Chem. 1990 Aug 15;265(23):13767–13775. [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith L. M., Sanders J. Z., Kaiser R. J., Hughes P., Dodd C., Connell C. R., Heiner C., Kent S. B., Hood L. E. Fluorescence detection in automated DNA sequence analysis. Nature. 1986 Jun 12;321(6071):674–679. doi: 10.1038/321674a0. [DOI] [PubMed] [Google Scholar]
  28. Strynadka N. C., James M. N. Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem. 1989;58:951–998. doi: 10.1146/annurev.bi.58.070189.004511. [DOI] [PubMed] [Google Scholar]
  29. Telewski F. W., Jaffe M. J. Thigmomorphogenesis: anatomical, morphological and mechanical analysis of genetically different sibs of Pinus taeda in response to mechanical perturbation. Physiol Plant. 1986;66:219–226. doi: 10.1111/j.1399-3054.1986.tb02412.x. [DOI] [PubMed] [Google Scholar]
  30. Telewski F. W., Jaffe M. J. Thigmomorphogenesis: field and laboratory studies of Abies fraseri in response to wind or mechanical perturbation. Physiol Plant. 1986;66:211–218. doi: 10.1111/j.1399-3054.1986.tb02411.x. [DOI] [PubMed] [Google Scholar]
  31. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Verwoerd T. C., Dekker B. M., Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989 Mar 25;17(6):2362–2362. doi: 10.1093/nar/17.6.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zimmer W. E., Schloss J. A., Silflow C. D., Youngblom J., Watterson D. M. Structural organization, DNA sequence, and expression of the calmodulin gene. J Biol Chem. 1988 Dec 25;263(36):19370–19383. [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES