Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Nov;6(11):1567–1582. doi: 10.1105/tpc.6.11.1567

Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid.

F Parcy 1, C Valon 1, M Raynal 1, P Gaubier-Comella 1, M Delseny 1, J Giraudat 1
PMCID: PMC160544  PMID: 7827492

Abstract

The accumulation kinetics of 18 mRNAs were characterized during Arabidopsis silique development. These marker mRNAs could be grouped in distinct classes according to their coordinate temporal expression in the wild type and provided a basis for further characterization of the corresponding regulatory pathways. The abscisic acid (ABA)-insensitive abi3-4 mutation modified the expression pattern of several but not all members of each of these wild-type temporal mRNA classes. This indicates that the ABI3 protein directly participates in the regulation of several developmental programs and that multiple regulatory pathways can lead to the simultaneous expression of distinct mRNA markers. The ABI3 gene is specifically expressed in seed, but ectopic expression of ABI3 conferred the ability to accumulate several seed-specific mRNA markers in response to ABA in transgenic plantlets. This suggested that expression of these marker mRNAs might be controlled by an ABI3-dependent and ABA-dependent pathway(s) in seed. However, characterization of the ABA-biosynthetic aba mutant revealed that the accumulation of these mRNAs is not correlated to the ABA content of seed. A possible means of regulating gene expression by developmental variations in ABA sensitivity is apparently not attributable to variations in ABI3 cellular abundance. The total content of ABI3 protein per seed markedly increased at certain developmental stages, but this augmentation appears to result primarily from the simultaneous multiplication of embryonic cells. Our current findings are discussed in relation to their general implications for the mechanisms controlling gene expression programs in seed.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassüner R., Hai N. V., Jung R., Saalbach G., Müntz K. The primary structure of the predominating vicilin storage protein subunit from field bean seeds (Vicia faba L. var. minor cv. Fribo). Nucleic Acids Res. 1987 Nov 25;15(22):9609–9609. doi: 10.1093/nar/15.22.9609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Downing W. L., Mauxion F., Fauvarque M. O., Reviron M. P., de Vienne D., Vartanian N., Giraudat J. A Brassica napus transcript encoding a protein related to the Künitz protease inhibitor family accumulates upon water stress in leaves, not in seeds. Plant J. 1992 Sep;2(5):685–693. [PubMed] [Google Scholar]
  5. Feinbaum R. L., Ausubel F. M. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol. 1988 May;8(5):1985–1992. doi: 10.1128/mcb.8.5.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  7. Finkelstein R. R. Abscisic acid-insensitive mutations provide evidence for stage-specific signal pathways regulating expression of an Arabidopsis late embryogenesis-abundant (lea) gene. Mol Gen Genet. 1993 Apr;238(3):401–408. doi: 10.1007/BF00291999. [DOI] [PubMed] [Google Scholar]
  8. Finkelstein R. R., Crouch M. L. Rapeseed embryo development in culture on high osmoticum is similar to that in seeds. Plant Physiol. 1986 Jul;81(3):907–912. doi: 10.1104/pp.81.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gaubier P., Raynal M., Hull G., Huestis G. M., Grellet F., Arenas C., Pagès M., Delseny M. Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol Gen Genet. 1993 Apr;238(3):409–418. doi: 10.1007/BF00292000. [DOI] [PubMed] [Google Scholar]
  10. Gilmour S. J., Artus N. N., Thomashow M. F. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol. 1992 Jan;18(1):13–21. doi: 10.1007/BF00018452. [DOI] [PubMed] [Google Scholar]
  11. Gilmour S. J., Thomashow M. F. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol. 1991 Dec;17(6):1233–1240. doi: 10.1007/BF00028738. [DOI] [PubMed] [Google Scholar]
  12. Giraudat J., Hauge B. M., Valon C., Smalle J., Parcy F., Goodman H. M. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell. 1992 Oct;4(10):1251–1261. doi: 10.1105/tpc.4.10.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldberg R. B., Barker S. J., Perez-Grau L. Regulation of gene expression during plant embryogenesis. Cell. 1989 Jan 27;56(2):149–160. doi: 10.1016/0092-8674(89)90888-x. [DOI] [PubMed] [Google Scholar]
  14. Guerche P., Tire C., De Sa F. G., De Clercq A., Van Montagu M., Krebbers E. Differential Expression of the Arabidopsis 2S Albumin Genes and the Effect of Increasing Gene Family Size. Plant Cell. 1990 May;2(5):469–478. doi: 10.1105/tpc.2.5.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hajela R. K., Horvath D. P., Gilmour S. J., Thomashow M. F. Molecular Cloning and Expression of cor (Cold-Regulated) Genes in Arabidopsis thaliana. Plant Physiol. 1990 Jul;93(3):1246–1252. doi: 10.1104/pp.93.3.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hattori T., Vasil V., Rosenkrans L., Hannah L. C., McCarty D. R., Vasil I. K. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 1992 Apr;6(4):609–618. doi: 10.1101/gad.6.4.609. [DOI] [PubMed] [Google Scholar]
  17. Hughes D. W., Galau G. A. Developmental and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture. Plant Cell. 1991 Jun;3(6):605–618. doi: 10.1105/tpc.3.6.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hughes D. W., Galau G. A. Temporally modular gene expression during cotyledon development. Genes Dev. 1989 Mar;3(3):358–369. doi: 10.1101/gad.3.3.358. [DOI] [PubMed] [Google Scholar]
  19. Höfte H., Desprez T., Amselem J., Chiapello H., Rouzé P., Caboche M., Moisan A., Jourjon M. F., Charpenteau J. L., Berthomieu P. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J. 1993 Dec;4(6):1051–1061. doi: 10.1046/j.1365-313x.1993.04061051.x. [DOI] [PubMed] [Google Scholar]
  20. Jorgensen R. Altered gene expression in plants due to trans interactions between homologous genes. Trends Biotechnol. 1990 Dec;8(12):340–344. doi: 10.1016/0167-7799(90)90220-r. [DOI] [PubMed] [Google Scholar]
  21. Kay R., Chan A., Daly M., McPherson J. Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science. 1987 Jun 5;236(4806):1299–1302. doi: 10.1126/science.236.4806.1299. [DOI] [PubMed] [Google Scholar]
  22. Keith K., Kraml M., Dengler N. G., McCourt P. fusca3: A Heterochronic Mutation Affecting Late Embryo Development in Arabidopsis. Plant Cell. 1994 May;6(5):589–600. doi: 10.1105/tpc.6.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Krebbers E., Herdies L., De Clercq A., Seurinck J., Leemans J., Van Damme J., Segura M., Gheysen G., Van Montagu M., Vandekerckhove J. Determination of the Processing Sites of an Arabidopsis 2S Albumin and Characterization of the Complete Gene Family. Plant Physiol. 1988 Aug;87(4):859–866. doi: 10.1104/pp.87.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lång V., Palva E. T. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 1992 Dec;20(5):951–962. doi: 10.1007/BF00027165. [DOI] [PubMed] [Google Scholar]
  25. McCarty D. R., Carson C. B., Stinard P. S., Robertson D. S. Molecular Analysis of viviparous-1: An Abscisic Acid-Insensitive Mutant of Maize. Plant Cell. 1989 May;1(5):523–532. doi: 10.1105/tpc.1.5.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McCarty D. R., Hattori T., Carson C. B., Vasil V., Lazar M., Vasil I. K. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell. 1991 Sep 6;66(5):895–905. doi: 10.1016/0092-8674(91)90436-3. [DOI] [PubMed] [Google Scholar]
  27. Meinke D. W. A Homoeotic Mutant of Arabidopsis thaliana with Leafy Cotyledons. Science. 1992 Dec 4;258(5088):1647–1650. doi: 10.1126/science.258.5088.1647. [DOI] [PubMed] [Google Scholar]
  28. Meyer Y., Grosset J., Chartier Y., Cleyet-Marel J. C. Preparation by two-dimensional electrophoresis of proteins for antibody production: antibodies against proteins whose synthesis is reduced by auxin in tobacco mesophyll protoplasts. Electrophoresis. 1988 Nov;9(11):704–712. doi: 10.1002/elps.1150091105. [DOI] [PubMed] [Google Scholar]
  29. Morris P. C., Kumar A., Bowles D. J., Cuming A. C. Osmotic stress and abscisic acid induce expression of the wheat Em genes. Eur J Biochem. 1990 Jul 5;190(3):625–630. doi: 10.1111/j.1432-1033.1990.tb15618.x. [DOI] [PubMed] [Google Scholar]
  30. Nambara E., Keith K., McCourt P., Naito S. Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene. Plant Cell Physiol. 1994 Apr;35(3):509–513. [PubMed] [Google Scholar]
  31. Nordin K., Heino P., Palva E. T. Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 1991 Jun;16(6):1061–1071. doi: 10.1007/BF00016077. [DOI] [PubMed] [Google Scholar]
  32. Ooms JJJ., Leon-Kloosterziel K. M., Bartels D., Koornneef M., Karssen C. M. Acquisition of Desiccation Tolerance and Longevity in Seeds of Arabidopsis thaliana (A Comparative Study Using Abscisic Acid-Insensitive abi3 Mutants). Plant Physiol. 1993 Aug;102(4):1185–1191. doi: 10.1104/pp.102.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pla M., Gómez J., Goday A., Pagès M. Regulation of the abscisic acid-responsive gene rab28 in maize viviparous mutants. Mol Gen Genet. 1991 Dec;230(3):394–400. doi: 10.1007/BF00280296. [DOI] [PubMed] [Google Scholar]
  34. Rock C. D., Zeevaart J. A. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7496–7499. doi: 10.1073/pnas.88.17.7496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shen W. J., Forde B. G. Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Res. 1989 Oct 25;17(20):8385–8385. doi: 10.1093/nar/17.20.8385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shirley B. W., Hanley S., Goodman H. M. Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell. 1992 Mar;4(3):333–347. doi: 10.1105/tpc.4.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  39. Thomas T. L. Gene expression during plant embryogenesis and germination: an overview. Plant Cell. 1993 Oct;5(10):1401–1410. doi: 10.1105/tpc.5.10.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vartanian N., Marcotte L., Giraudat J. Drought Rhizogenesis in Arabidopsis thaliana (Differential Responses of Hormonal Mutants). Plant Physiol. 1994 Feb;104(2):761–767. doi: 10.1104/pp.104.2.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Williams B., Tsang A. A maize gene expressed during embryogenesis is abscisic acid-inducible and highly conserved. Plant Mol Biol. 1991 May;16(5):919–923. doi: 10.1007/BF00015086. [DOI] [PubMed] [Google Scholar]
  43. Yamaguchi-Shinozaki K., Shinozaki K. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet. 1993 Apr;238(1-2):17–25. doi: 10.1007/BF00279525. [DOI] [PubMed] [Google Scholar]
  44. van Rooijen G. J., Terning L. I., Moloney M. M. Nucleotide sequence of an Arabidopsis thaliana oleosin gene. Plant Mol Biol. 1992 Apr;18(6):1177–1179. doi: 10.1007/BF00047721. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES