Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Nov;6(11):1635–1641. doi: 10.1105/tpc.6.11.1635

DNA Damage Levels Determine Cyclobutyl Pyrimidine Dimer Repair Mechanisms in Alfalfa Seedlings.

F E Quaite 1, S Takayanagi 1, J Ruffini 1, J C Sutherland 1, B M Sutherland 1
PMCID: PMC160549  PMID: 12244228

Abstract

Ultraviolet radiation in sunlight damages DNA in plants, but little is understood about the types, lesion capacity, and coordination of repair pathways. We challenged intact alfalfa seedlings with UV doses that induced different initial levels of cyclobutyl pyrimidine dimers and measured repair by excision and photoreactivation. By using alkaline gel electrophoresis of nonradioactive DNAs treated with a cyclobutyl pyrimidine dimer-specific UV endonuclease, we quantitated ethidium-stained DNA by electronic imaging and calculated lesion frequencies from the number average molecular lengths. At low initial dimer frequencies (less than ~30 dimers per million bases), the seedlings used only photoreactivation to repair dimers; excision repair was not significant. At higher damage levels, both excision and photorepair contributed significantly. This strategy would allow plants with low damage levels to use error-free repair requiring only an external light energy source, whereas seedlings subjected to higher damage frequencies could call on additional repair processes requiring cellular energy. Characterization of repair in plants thus requires an investigation of a range of conditions, including the level of initial damage.

Full Text

The Full Text of this article is available as a PDF (616.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britt A. B., Chen J. J., Wykoff D., Mitchell D. A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidinone(6-4) dimers. Science. 1993 Sep 17;261(5128):1571–1574. doi: 10.1126/science.8372351. [DOI] [PubMed] [Google Scholar]
  2. Freeman S. E., Blackett A. D., Monteleone D. C., Setlow R. B., Sutherland B. M., Sutherland J. C. Quantitation of radiation-, chemical-, or enzyme-induced single strand breaks in nonradioactive DNA by alkaline gel electrophoresis: application to pyrimidine dimers. Anal Biochem. 1986 Oct;158(1):119–129. doi: 10.1016/0003-2697(86)90599-3. [DOI] [PubMed] [Google Scholar]
  3. Howland G. P. Dark-repair of ultraviolet-induced pyrimidine dimers in the DNA of wild carrot protoplasts. Nature. 1975 Mar 13;254(5496):160–161. doi: 10.1038/254160a0. [DOI] [PubMed] [Google Scholar]
  4. JAGGER J. A small and inexpensive ultraviolet dose-rate meter useful in biological experiements. Radiat Res. 1961 Apr;14:394–403. [PubMed] [Google Scholar]
  5. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  6. Quaite F. E., Sutherland B. M., Sutherland J. C. Quantitation of pyrimidine dimers in DNA from UVB-irradiated alfalfa (Medicago sativa L.) seedlings. Appl Theor Electrophor. 1992;2(6):171–175. [PubMed] [Google Scholar]
  7. Quaite F. E., Sutherland J. C., Sutherland B. M. Isolation of high-molecular-weight plant DNA for DNA damage quantitation: relative effects of solar 297 nm UVB and 365 nm radiation. Plant Mol Biol. 1994 Feb;24(3):475–483. doi: 10.1007/BF00024115. [DOI] [PubMed] [Google Scholar]
  8. Small G. D., Greimann C. S. Photoreactivation and dark repair of ultraviolet light-induced pyrimidine dimers in chloroplast DNA. Nucleic Acids Res. 1977 Aug;4(8):2893–2902. doi: 10.1093/nar/4.8.2893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sutherland B. M., Bennett P. V., Conlon K., Epling G. A., Sutherland J. C. Quantitation of supercoiled DNA cleavage in nonradioactive DNA: application to ionizing radiation and synthetic endonuclease cleavage. Anal Biochem. 1992 Feb 14;201(1):80–86. doi: 10.1016/0003-2697(92)90176-8. [DOI] [PubMed] [Google Scholar]
  10. Sutherland J. C., Lin B., Monteleone D. C., Mugavero J., Sutherland B. M., Trunk J. Electronic imaging system for direct and rapid quantitation of fluorescence from electrophoretic gels: application to ethidium bromide-stained DNA. Anal Biochem. 1987 Jun;163(2):446–457. doi: 10.1016/0003-2697(87)90247-8. [DOI] [PubMed] [Google Scholar]
  11. Sutherland J. C., Monteleone D. C., Mugavero J. H., Trunk J. Unidirectional pulsed-field electrophoresis of single- and double-stranded DNA in agarose gels: analytical expressions relating mobility and molecular length and their application in the measurement of strand breaks. Anal Biochem. 1987 May 1;162(2):511–520. doi: 10.1016/0003-2697(87)90427-1. [DOI] [PubMed] [Google Scholar]
  12. Trosko J. E., Mansour V. H. Photoreactivation of ultraviolet light-induced pyrimidine dimers in Ginkgo cells grown in vitro. Mutat Res. 1969 Jan-Feb;7(1):120–121. doi: 10.1016/0027-5107(69)90056-6. [DOI] [PubMed] [Google Scholar]
  13. Trosko J. E., Mansour V. H. Response of tobacco and Haplopappus cells to ultraviolet irradiation after posttreatment with photoreactivating light. Radiat Res. 1968 Nov;36(2):333–343. [PubMed] [Google Scholar]
  14. Van't Hof J., Kovacs C. J. Mitotic delay in two biochemically different G1 cell populations in cultured roots of pea (Pisum sativum). Radiat Res. 1970 Dec;44(3):700–712. [PubMed] [Google Scholar]
  15. Wani A. A., D'Ambrosio S. M., Alvi N. K. Quantitation of pyrimidine dimers by immunoslot blot following sublethal UV-irradiation of human cells. Photochem Photobiol. 1987 Oct;46(4):477–482. doi: 10.1111/j.1751-1097.1987.tb04798.x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES