Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Dec;6(12):1747–1762. doi: 10.1105/tpc.6.12.1747

Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells.

C C Subbaiah 1, D S Bush 1, M M Sachs 1
PMCID: PMC160559  PMID: 7866021

Abstract

Based on pharmacological evidence, we previously proposed that intracellular Ca2+ mediates the perception of O2 deprivation in maize seedlings. Herein, using fluorescence imaging and photometry of Ca2+ in maize suspension-cultured cells, the proposal was further investigated. Two complementary approaches were taken: (1) real time analysis of anoxia-induced changes in cytosolic Ca2+ concentration ([Ca]i) and (2) experimental manipulation of [Ca]i and then assay of the resultant anoxia-specific responses. O2 depletion caused an immediate increase in [Ca2+]i, and this was reversible within a few seconds of reoxygenation. The [Ca]i elevation proceeded independent of extracellular Ca2+. The kinetics of the Ca2+ response showed that it occurred much earlier than any detectable changes in gene expression. Ruthenium red blocked the anoxic [Ca]i elevation and also the induction of adh1 (encoding alcohol dehydrogenase) and sh1 (encoding sucrose synthase) mRNA. Ca2+, when added along with ruthenium red, prevented the effects of the antagonist on the anoxic responses. Verapamil and bepridil failed to block the [Ca]i rise induced by anoxia and were equally ineffective on anoxic gene expression. Caffeine induced an elevation of [Ca]i as well as ADH activity under normoxia. The data provide direct evidence for [Ca]i elevation in maize cells as a result of anoxia-induced mobilization of Ca2+ from intracellular stores. Furthermore, any manipulation that modified the [Ca]i rise brought about a parallel change in the expression of two anoxia-inducible genes. Thus, these results corroborate our proposal that [Ca]i is a physiological transducer of anoxia signals in plants.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldashev A. A., Agibetov K. A., Iugai A. A., Shamshiev A. T., Kim E. V. Gipoksicheskie stress-belki iz limfotsitov cheloveka, indutsiruemye ionami Ca2+. Dokl Akad Nauk SSSR. 1991;321(1):210–213. [PubMed] [Google Scholar]
  2. Andrews D. L., Cobb B. G., Johnson J. R., Drew M. C. Hypoxic and Anoxic Induction of Alcohol Dehydrogenase in Roots and Shoots of Seedlings of Zea mays (Adh Transcripts and Enzyme Activity). Plant Physiol. 1993 Feb;101(2):407–414. doi: 10.1104/pp.101.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aw T. Y., Andersson B. S., Jones D. P. Suppression of mitochondrial respiratory function after short-term anoxia. Am J Physiol. 1987 Apr;252(4 Pt 1):C362–C368. doi: 10.1152/ajpcell.1987.252.4.C362. [DOI] [PubMed] [Google Scholar]
  4. Bassani J. W., Bassani R. A., Bers D. M. Twitch-dependent SR Ca accumulation and release in rabbit ventricular myocytes. Am J Physiol. 1993 Aug;265(2 Pt 1):C533–C540. doi: 10.1152/ajpcell.1993.265.2.C533. [DOI] [PubMed] [Google Scholar]
  5. Bernardi P., Paradisi V., Pozzan T., Azzone G. F. Pathway for uncoupler-induced calcium efflux in rat liver mitochondria: inhibition by ruthenium red. Biochemistry. 1984 Apr 10;23(8):1645–1651. doi: 10.1021/bi00303a010. [DOI] [PubMed] [Google Scholar]
  6. Gasbarrini A., Borle A. B., Farghali H., Francavilla A., Van Thiel D. Fructose protects rat hepatocytes from anoxic injury. Effect on intracellular ATP, Ca2+i, Mg2+i, Na+i, and pHi. J Biol Chem. 1992 Apr 15;267(11):7545–7552. [PubMed] [Google Scholar]
  7. Gibbon B. C., Kropf D. L. Cytosolic pH Gradients Associated with Tip Growth. Science. 1994 Mar 11;263(5152):1419–1421. doi: 10.1126/science.263.5152.1419. [DOI] [PubMed] [Google Scholar]
  8. Gilroy S., Fricker M. D., Read N. D., Trewavas A. J. Role of Calcium in Signal Transduction of Commelina Guard Cells. Plant Cell. 1991 Apr;3(4):333–344. doi: 10.1105/tpc.3.4.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gunter T. E., Pfeiffer D. R. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990 May;258(5 Pt 1):C755–C786. doi: 10.1152/ajpcell.1990.258.5.C755. [DOI] [PubMed] [Google Scholar]
  10. Jaffe L. F. Calcium explosions as triggers of development. Ann N Y Acad Sci. 1980;339:86–101. doi: 10.1111/j.1749-6632.1980.tb15971.x. [DOI] [PubMed] [Google Scholar]
  11. Janczewski A. M., Lakatta E. G. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes. J Physiol. 1993 Nov;471:343–363. doi: 10.1113/jphysiol.1993.sp019904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kao J. P., Harootunian A. T., Tsien R. Y. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem. 1989 May 15;264(14):8179–8184. [PubMed] [Google Scholar]
  13. Lu G., Sehnke P. C., Ferl R. J. Phosphorylation and calcium binding properties of an Arabidopsis GF14 brain protein homolog. Plant Cell. 1994 Apr;6(4):501–510. doi: 10.1105/tpc.6.4.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McAinsh M. R., Brownlee C., Hetherington A. M. Visualizing Changes in Cytosolic-Free Ca2+ during the Response of Stomatal Guard Cells to Abscisic Acid. Plant Cell. 1992 Sep;4(9):1113–1122. doi: 10.1105/tpc.4.9.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McNulty T. J., Taylor C. W. Caffeine-stimulated Ca2+ release from the intracellular stores of hepatocytes is not mediated by ryanodine receptors. Biochem J. 1993 May 1;291(Pt 3):799–801. doi: 10.1042/bj2910799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Riley W. W., Jr, Pfeiffer D. R. Rapid and extensive release of Ca2+ from energized mitochondria induced by EGTA. J Biol Chem. 1986 Jan 5;261(1):28–31. [PubMed] [Google Scholar]
  17. Roberts J. K., Callis J., Wemmer D., Walbot V., Jardetzky O. Mechanisms of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3379–3383. doi: 10.1073/pnas.81.11.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Russell D. A., Wong D. M., Sachs M. M. The anaerobic response of soybean. Plant Physiol. 1990 Feb;92(2):401–407. doi: 10.1104/pp.92.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sachs M. M., Freeling M., Okimoto R. The anaerobic proteins of maize. Cell. 1980 Jul;20(3):761–767. doi: 10.1016/0092-8674(80)90322-0. [DOI] [PubMed] [Google Scholar]
  20. Subbaiah C. C., Zhang J., Sachs M. M. Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings. Plant Physiol. 1994 May;105(1):369–376. doi: 10.1104/pp.105.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vites A. M., Pappano A. J. Ruthenium red selectively prevents Ins(1,4,5)P3-but not caffeine-gated calcium release in avian atrium. Am J Physiol. 1992 Jan;262(1 Pt 2):H268–H277. doi: 10.1152/ajpheart.1992.262.1.H268. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES