Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Plant Cell logoLink to The Plant Cell
. 1994 Dec;6(12):1899–1909. doi: 10.1105/tpc.6.12.1899

An Arabidopsis heat shock protein complements a thermotolerance defect in yeast.

E C Schirmer 1, S Lindquist 1, E Vierling 1
PMCID: PMC160570  PMID: 7866032

Abstract

The heat shock protein Hsp104 of the yeast Saccharomyces cerevisiae plays a key role in promoting survival at extreme temperatures. We found that when diverse higher plant species are exposed to high temperatures they accumulate proteins that are antigenically related to Hsp104. We isolated a cDNA corresponding to one of these proteins from Arabidopsis. The protein, AtHSP101, is 43% identical to yeast Hsp104. DNA gel blot analysis indicated that AtHSP101 is encoded by a single- or low-copy number gene. AtHsp101 mRNA was undetectable in the absence of stress but accumulated to high levels during exposure to high temperatures. When AtHSP101 was expressed in yeast, it complemented the thermotolerance defect caused by a deletion of the HSP104 gene. The ability of AtHSP101 to protect yeast from severe heat stress strongly suggests that this HSP plays an important role in thermotolerance in higher plants.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abernethy R. H., Thiel D. S., Petersen N. S., Helm K. Thermotolerance is developmentally dependent in germinating wheat seed. Plant Physiol. 1989 Feb;89(2):569–576. doi: 10.1104/pp.89.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Almoguera C., Jordano J. Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol. 1992 Aug;19(5):781–792. doi: 10.1007/BF00027074. [DOI] [PubMed] [Google Scholar]
  3. Chen Q., Lauzon L. M., DeRocher A. E., Vierling E. Accumulation, stability, and localization of a major chloroplast heat-shock protein. J Cell Biol. 1990 Jun;110(6):1873–1883. doi: 10.1083/jcb.110.6.1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  6. Helm K. W., Vierling E. An Arabidopsis thaliana cDNA clone encoding a low molecular weight heat shock protein. Nucleic Acids Res. 1989 Oct 11;17(19):7995–7995. doi: 10.1093/nar/17.19.7995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hsieh M. H., Chen J. T., Jinn T. L., Chen Y. M., Lin C. Y. A class of soybean low molecular weight heat shock proteins : immunological study and quantitation. Plant Physiol. 1992 Aug;99(4):1279–1284. doi: 10.1104/pp.99.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kiyosue T., Yamaguchi-Shinozaki K., Shinozaki K. Characterization of cDNA for a dehydration-inducible gene that encodes a CLP A, B-like protein in Arabidopsis thaliana L. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1214–1220. doi: 10.1006/bbrc.1993.2381. [DOI] [PubMed] [Google Scholar]
  9. Lee Y. R., Nagao R. T., Key J. L. A soybean 101-kD heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermotolerance. Plant Cell. 1994 Dec;6(12):1889–1897. doi: 10.1105/tpc.6.12.1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. [DOI] [PubMed] [Google Scholar]
  11. Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Neumann D., Nover L., Parthier B., Rieger R., Scharf K. D., Wollgiehn R., zur Nieden U. Heat shock and other stress response systems of plants. Results Probl Cell Differ. 1989;16:1–155. [PubMed] [Google Scholar]
  13. Osteryoung K. W., Sundberg H., Vierling E. Poly(A) tail length of a heat shock protein RNA is increased by severe heat stress, but intron splicing is unaffected. Mol Gen Genet. 1993 Jun;239(3):323–333. doi: 10.1007/BF00276930. [DOI] [PubMed] [Google Scholar]
  14. Parsell D. A., Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet. 1993;27:437–496. doi: 10.1146/annurev.ge.27.120193.002253. [DOI] [PubMed] [Google Scholar]
  15. Parsell D. A., Sanchez Y., Stitzel J. D., Lindquist S. Hsp104 is a highly conserved protein with two essential nucleotide-binding sites. Nature. 1991 Sep 19;353(6341):270–273. doi: 10.1038/353270a0. [DOI] [PubMed] [Google Scholar]
  16. Sanchez Y., Lindquist S. L. HSP104 required for induced thermotolerance. Science. 1990 Jun 1;248(4959):1112–1115. doi: 10.1126/science.2188365. [DOI] [PubMed] [Google Scholar]
  17. Sanchez Y., Parsell D. A., Taulien J., Vogel J. L., Craig E. A., Lindquist S. Genetic evidence for a functional relationship between Hsp104 and Hsp70. J Bacteriol. 1993 Oct;175(20):6484–6491. doi: 10.1128/jb.175.20.6484-6491.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sander C., Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins. 1991;9(1):56–68. doi: 10.1002/prot.340090107. [DOI] [PubMed] [Google Scholar]
  19. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Singla S. L., Grover A. Antibodies raised against yeast HSP 104 cross-react with a heat- and abscisic acid-regulated polypeptide in rice. Plant Mol Biol. 1993 Sep;22(6):1177–1180. doi: 10.1007/BF00028989. [DOI] [PubMed] [Google Scholar]
  21. Squires C., Squires C. L. The Clp proteins: proteolysis regulators or molecular chaperones? J Bacteriol. 1992 Feb;174(4):1081–1085. doi: 10.1128/jb.174.4.1081-1085.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vierling E., Key J. L. Ribulose 1,5-Bisphosphate Carboxylase Synthesis during Heat Shock. Plant Physiol. 1985 May;78(1):155–162. doi: 10.1104/pp.78.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Werner-Washburne M., Stone D. E., Craig E. A. Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Jul;7(7):2568–2577. doi: 10.1128/mcb.7.7.2568. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES