Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1994 Dec;6(12):1933–1940. doi: 10.1105/tpc.6.12.1933

Carbohydrate moiety of the Petunia inflata S3 protein is not required for self-incompatibility interactions between pollen and pistil.

B Karunanandaa 1, S Huang 1, T Kao 1
PMCID: PMC160573  PMID: 7866034

Abstract

For Petunia inflata and Nicotiana alata, which display gametophytic self-incompatibility, S proteins (the products of the multiallelic S gene in the pistil) have been shown to control the pistil's ability to recognize and reject self-pollen. The biochemical mechanism for rejection of self-pollen by S proteins has been shown to involve their ribonuclease activity; however, the molecular basis for self/non-self recognition by S proteins is not yet understood. Here, we addressed whether the glycan chain of the S3 protein of P. inflata is involved in self/non-self recognition by producing a nonglycosylated S3 protein in transgenic plants and examining the effect of deglycosylation on the ability of the S3 protein to reject S3 pollen. The S3 gene was mutagenized by replacing the codon for Asn-29, which is the only potential N-glycosylation site of the S3 protein, with a codon for Asp, and the mutant S3 gene was introduced into P. inflata plants of the S1S2 genotype. Six transgenic plants that produced a normal level of the nonglycosylated S3 protein acquired the ability to reject S3 pollen completely. These results suggest that the carbohydrate moiety of the S3 protein does not play a role in recognition or rejection of self-pollen and that the S allele specificity determinant of the S3 protein and those S proteins that contain a single glycan chain at the same site as the S3 protein must reside in the amino acid sequence itself.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Coleman C. E., Kao T. The flanking regions of two Petunia inflata S alleles are heterogeneous and contain repetitive sequences. Plant Mol Biol. 1992 Feb;18(4):725–737. doi: 10.1007/BF00020014. [DOI] [PubMed] [Google Scholar]
  3. Gray J. E., McClure B. A., Bonig I., Anderson M. A., Clarke A. E. Action of the Style Product of the Self-Incompatibility Gene of Nicotiana alata (S-RNase) on in Vitro-Grown Pollen Tubes. Plant Cell. 1991 Mar;3(3):271–283. doi: 10.1105/tpc.3.3.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  5. Huang S., Lee H. S., Karunanandaa B., Kao T. H. Ribonuclease activity of Petunia inflata S proteins is essential for rejection of self-pollen. Plant Cell. 1994 Jul;6(7):1021–1028. doi: 10.1105/tpc.6.7.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kobata A. Structures and functions of the sugar chains of glycoproteins. Eur J Biochem. 1992 Oct 15;209(2):483–501. doi: 10.1111/j.1432-1033.1992.tb17313.x. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Lee H. S., Huang S., Kao T. S proteins control rejection of incompatible pollen in Petunia inflata. Nature. 1994 Feb 10;367(6463):560–563. doi: 10.1038/367560a0. [DOI] [PubMed] [Google Scholar]
  9. Lis H., Sharon N. Protein glycosylation. Structural and functional aspects. Eur J Biochem. 1993 Nov 15;218(1):1–27. doi: 10.1111/j.1432-1033.1993.tb18347.x. [DOI] [PubMed] [Google Scholar]
  10. McClure B. A., Haring V., Ebert P. R., Anderson M. A., Simpson R. J., Sakiyama F., Clarke A. E. Style self-incompatibility gene products of Nicotiana alata are ribonucleases. Nature. 1989 Dec 21;342(6252):955–957. doi: 10.1038/342955a0. [DOI] [PubMed] [Google Scholar]
  11. Mu J., Kao T. H. Expression of two S-ribonucleases of Petunia inflata using baculovirus expression system. Biochem Biophys Res Commun. 1992 Aug 31;187(1):299–304. doi: 10.1016/s0006-291x(05)81492-5. [DOI] [PubMed] [Google Scholar]
  12. Murfett J., Atherton T. L., Mou B., Gasser C. S., McClure B. A. S-RNase expressed in transgenic Nicotiana causes S-allele-specific pollen rejection. Nature. 1994 Feb 10;367(6463):563–566. doi: 10.1038/367563a0. [DOI] [PubMed] [Google Scholar]
  13. Newbigin E., Anderson M. A., Clarke A. E. Gametophytic Self-Incompatibility Systems. Plant Cell. 1993 Oct;5(10):1315–1324. doi: 10.1105/tpc.5.10.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rivers B. A., Bernatzky R., Robinson S. J., Jahnen-Dechent W. Molecular diversity at the self-incompatibility locus is a salient feature in natural populations of wild tomato (Lycopersicon peruvianum). Mol Gen Genet. 1993 Apr;238(3):419–427. doi: 10.1007/BF00292001. [DOI] [PubMed] [Google Scholar]
  15. Royo J., Kowyama Y., Clarke A. E. Cloning and nucleotide sequence of two S-RNases from Lycopersicon peruvianum (L.) Mill. Plant Physiol. 1994 Jun;105(2):751–752. doi: 10.1104/pp.105.2.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Singh A., Ai Y., Kao T. H. Characterization of Ribonuclease Activity of Three S-Allele-Associated Proteins of Petunia inflata. Plant Physiol. 1991 May;96(1):61–68. doi: 10.1104/pp.96.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wassarman P. M. Profile of a mammalian sperm receptor. Development. 1990 Jan;108(1):1–17. doi: 10.1242/dev.108.Supplement.1. [DOI] [PubMed] [Google Scholar]
  18. Woodward J. R., Bacic A., Jahnen W., Clarke A. E. N-Linked Glycan Chains on S-Allele-Associated Glycoproteins from Nicotiana alata. Plant Cell. 1989 May;1(5):511–514. doi: 10.1105/tpc.1.5.511. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES