Abstract
The elongation response of Avena sativa (oat) stem segments to gibberellic acid (GA3) is of large magnitude, with high hormonal sensitivity and specificity, but without cell division activity. This system is therefore an excellent model for mechanistic studies on higher plant cell elongation and the action of gibberellin. At millimolar concentrations, the calcium antagonists verapamil, D-600, nicardipine, diltiazem, bepridil, 8-(N,N,-diethylamino)-octyl-3,4,5-trimethoxybenzoate HCl, and lanthanum substantially inhibited the growth of GA3-treated segments but had no effect on the elongation of nonhormone-treated segments. Although verapamil reduced the maximum growth rate and caused premature cessation of growth, even preincubation of the segments with the drug prior to treatment with GA3 failed to inhibit the earliest measured stimulation of growth by the hormone. Inhibition by verapamil was not reversed by increased concentrations of GA3 or calcium. Neither the calcium ionophore A23187 nor agonist BAY K 8644 had any effect on growth. Light microscopic examination of epidermal peels from antagonist-treated internodal tissue revealed no obvious differences from the control except that the cells were not as elongated. Although these results may support a role for calcium ion movement in maintaining the GA3-induced growth of Avena stem segments, they do not support the involvement of calcium ion movement in the hormone-mediated initiation of growth.
Full Text
The Full Text of this article is available as a PDF (744.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams P. A., Kaufman P. B., Ikuma H. Effects of gibberellic Acid and sucrose on the growth of oat (Avena) stem segments. Plant Physiol. 1973 Jun;51(6):1102–1108. doi: 10.1104/pp.51.6.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams P. A., Montague M. J., Tepfer M., Rayle D. L., Ikuma H., Kaufman P. B. Effect of gibberellic Acid on the plasticity and elasticity of Avena stem segments. Plant Physiol. 1975 Dec;56(6):757–760. doi: 10.1104/pp.56.6.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams P. A., Ross M. A. Interaction of indoleacetic Acid and gibberellic Acid in the short-term growth kinetics of oat stem segments. Plant Physiol. 1983 Nov;73(3):566–568. doi: 10.1104/pp.73.3.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrejauskas E., Hertel R., Marmé D. 3,4,5-Triiodobenzoic acid affects [3H]verapamil binding to plant and animal membrane fractions and smooth muscle contraction. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1269–1275. doi: 10.1016/s0006-291x(86)80420-x. [DOI] [PubMed] [Google Scholar]
- Campbell K. P., Leung A. T., Sharp A. H. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci. 1988 Oct;11(10):425–430. doi: 10.1016/0166-2236(88)90193-2. [DOI] [PubMed] [Google Scholar]
- Conrad P. A., Hepler P. K. The effect of 1,4-dihydropyridines on the initiation and development of gametophore buds in the moss funaria. Plant Physiol. 1988 Mar;86(3):684–687. doi: 10.1104/pp.86.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott D. C., Batchelor S. M., Cassar R. A., Marinos N. G. Calmodulin-binding drugs affect responses to cytokinin, auxin, and gibberellic Acid. Plant Physiol. 1983 May;72(1):219–224. doi: 10.1104/pp.72.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasenstein K. H., Evans M. L. Calcium dependence of rapid auxin action in maize roots. Plant Physiol. 1986;81:439–443. doi: 10.1104/pp.81.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moll B. A., Jones R. L. Alpha-amylase secretion by single barley aleurone layers. Plant Physiol. 1982 Oct;70(4):1149–1155. doi: 10.1104/pp.70.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montague M. J., Ikuma H., Kaufman P. B. On the nature of the physiological responses of Avena stem segments to gibberellic Acid treatment. Plant Physiol. 1973 Jun;51(6):1026–1032. doi: 10.1104/pp.51.6.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montague M. J., Ikuma H. Regulation of glucose metabolism and cell wall synthesis in Avena stem segments by gibberellic Acid. Plant Physiol. 1978 Sep;62(3):391–396. doi: 10.1104/pp.62.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montague M. J. Inhibition of Gibberellic Acid-induced Elongation in Avena Stem Segments by a Substituted Pyrimidine. Plant Physiol. 1975 Aug;56(2):167–170. doi: 10.1104/pp.56.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pantoja O., Gelli A., Blumwald E. Voltage-dependent calcium channels in plant vacuoles. Science. 1992 Mar 20;255(5051):1567–1570. doi: 10.1126/science.255.5051.1567. [DOI] [PubMed] [Google Scholar]
- Perdue D. O., LaFavre A. K., Leopold A. C. Calcium in the regulation of gravitropism by light. Plant Physiol. 1988;86:1276–1280. doi: 10.1104/pp.86.4.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poovaiah B. W., Reddy A. S. Calcium messenger system in plants. CRC Crit Rev Plant Sci. 1987;6(1):47–103. doi: 10.1080/07352688709382247. [DOI] [PubMed] [Google Scholar]
- Saunders M. J., Hepler P. K. Calcium ionophore a23187 stimulates cytokinin-like mitosis in funaria. Science. 1982 Sep 3;217(4563):943–945. doi: 10.1126/science.217.4563.943. [DOI] [PubMed] [Google Scholar]
- Schroeder J. I., Thuleau P. Ca2+ Channels in Higher Plant Cells. Plant Cell. 1991 Jun;3(6):555–559. doi: 10.1105/tpc.3.6.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Underwood G. A., Riches D. W. Transmembrane-mediated changes in [Ca2+] are involved in the signaling pathway leading to macrophage cytocidal differentiation: implications of localized changes in intracellular [Ca2+] and of interferon priming on Ca2+ utilization. Mol Biol Cell. 1992 Mar;3(3):335–347. doi: 10.1091/mbc.3.3.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Virk S. S., Cleland R. E. The role of wall calcium in the extension of cell walls of soybean hypocotyls. Planta. 1990;182:559–564. [PubMed] [Google Scholar]
