Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Feb;101(2):429–434. doi: 10.1104/pp.101.2.429

Arabidopsis chloroplasts dissimilate L-arginine and L-citrulline for use as N source.

R A Ludwig 1
PMCID: PMC160588  PMID: 8278506

Abstract

When aseptically grown on defined medium with either L-arginine, L-citrulline, or nitrate as the sole N source, Arabidopsis plants grew and developed normally. Three catabolic activities, L-arginine iminohydrolase, L-ornithine carbamoyltransferase, and carbamate kinase, were found in stromal fractions of purified Arabidopsis chloroplasts. These activities dissimilate L-arginine and/or L-citrulline into L-ornithine, ammonium, bicarbonate, and ATP. In physiological tests with purified, intact Arabidopsis chloroplasts, L-[guanido-14C]arginine was rapidly taken up and about 10% was decomposed, releasing 14CO2. Therefore, chloroplasts can take up and dissimilate L-arginine. In principle, chloroplast arginine dissimilation allows Arabidopsis to use L-arginine and/or L-citrulline as general N sources for growth. However, plants rarely encounter exogenous L-arginine and/or L-citrulline in amounts exceeding their biosynthetic needs. Therefore, L-arginine and L-citrulline might serve as endogenous N sources.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Davis R. H. Compartmental and regulatory mechanisms in the arginine pathways of Neurospora crassa and Saccharomyces cerevisiae. Microbiol Rev. 1986 Sep;50(3):280–313. doi: 10.1128/mr.50.3.280-313.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hedrick J. L., Smith A. J. Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys. 1968 Jul;126(1):155–164. doi: 10.1016/0003-9861(68)90569-9. [DOI] [PubMed] [Google Scholar]
  4. Lundin A., Hasenson M., Persson J., Pousette A. Estimation of biomass in growing cell lines by adenosine triphosphate assay. Methods Enzymol. 1986;133:27–42. doi: 10.1016/0076-6879(86)33053-2. [DOI] [PubMed] [Google Scholar]
  5. Mann A. F., Fentem P. A., Stewart G. R. Tissue localization of barley (Hordeum vulgare) glutamine synthetase isoenzymes. FEBS Lett. 1980 Feb 11;110(2):265–267. doi: 10.1016/0014-5793(80)80088-3. [DOI] [PubMed] [Google Scholar]
  6. Micallef B. J., Shelp B. J. Arginine Metabolism in Developing Soybean Cotyledons : II. Biosynthesis. Plant Physiol. 1989 Jun;90(2):631–634. doi: 10.1104/pp.90.2.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Shibata H., Ochiai H., Sawa Y., Miyoshi S. Localization of carbamoylphosphate synthetase and aspartate carbamoyltransferase in chloroplasts. Plant Physiol. 1986 Jan;80(1):126–129. doi: 10.1104/pp.80.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Vander Wauven C., Piérard A., Kley-Raymann M., Haas D. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J Bacteriol. 1984 Dec;160(3):928–934. doi: 10.1128/jb.160.3.928-934.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. de Ruiter H., Kollöffel C. Activity of enzymes of arginine metabolism in the cotyledons of developing and germinating pea seeds. Plant Physiol. 1982 Jul;70(1):313–315. doi: 10.1104/pp.70.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES