Abstract
A family of radish (Raphanus sativus) calmodulin antagonists (RCAs) was purified from seeds by extraction, centrifugation, batch-wise elution from carboxymethyl-cellulose, and high performance liquid chromatography (HPLC) on an SP5PW cation-exchange column. This RCA fraction was further resolved into three calmodulin antagonist polypeptides (RCA1, RCA2, and RCA3) by denaturation in the presence of guanidinium HCl and mercaptoethanol and subsequent reverse-phase HPLC on a C8 column eluted with an acetonitrile gradient in the presence of 0.1% trifluoroacetic acid. The RCA preparation, RCA1, RCA2, RCA3, and other radish seed proteins are phosphorylated by wheat embryo Ca(2+)-dependent protein kinase (CDPK). The RCA preparation contains other CDPK substrates in addition to RCA1, RCA2, and RCA3. The RCA preparation, RCA1, RCA2, and RCA3 inhibit chicken gizzard calmodulin-dependent myosin light chain kinase assayed with a myosin-light chain-based synthetic peptide substrate (fifty percent inhibitory concentrations of RCA2 and RCA3 are about 7 and 2 microM, respectively). N-terminal sequencing by sequential Edman degradation of RCA1, RCA2, and RCA3 revealed sequences having a high homology with the small subunit of the storage protein napin from Brassica napus and with related proteins. The deduced amino acid sequences of RCA1, RCA2, RCA3, and RCA3' (a subform of RCA3) have agreement with average molecular masses from electrospray mass spectrometry of 4537, 4543, 4532, and 4560 kD, respectively. The only sites for serine phosphorylation are near or at the C termini and hence adjacent to the sites of proteolytic precursor cleavage.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ampe C., Van Damme J., de Castro L. A., Sampaio M. J., Van Montagu M., Vandekerckhove J. The amino-acid sequence of the 2S sulphur-rich proteins from seeds of Brazil nut (Bertholletia excelsa H.B.K.). Eur J Biochem. 1986 Sep 15;159(3):597–604. doi: 10.1111/j.1432-1033.1986.tb09926.x. [DOI] [PubMed] [Google Scholar]
- Baszczynski C. L., Fallis L. Isolation and nucleotide sequence of a genomic clone encoding a new Brassica napus napin gene. Plant Mol Biol. 1990 Apr;14(4):633–635. doi: 10.1007/BF00027511. [DOI] [PubMed] [Google Scholar]
- Blumenthal D. K., Charbonneau H., Edelman A. M., Hinds T. R., Rosenberg G. B., Storm D. R., Vincenzi F. F., Beavo J. A., Krebs E. G. Synthetic peptides based on the calmodulin-binding domain of myosin light chain kinase inhibit activation of other calmodulin-dependent enzymes. Biochem Biophys Res Commun. 1988 Oct 31;156(2):860–865. doi: 10.1016/s0006-291x(88)80923-9. [DOI] [PubMed] [Google Scholar]
- Blumenthal D. K., Takio K., Edelman A. M., Charbonneau H., Titani K., Walsh K. A., Krebs E. G. Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc Natl Acad Sci U S A. 1985 May;82(10):3187–3191. doi: 10.1073/pnas.82.10.3187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cocucci M., Negrini N. Changes in the Levels of Calmodulin and of a Calmodulin Inhibitor in the Early Phases of Radish (Raphanus sativus L.) Seed Germination: Effects of Aba and Fusicoccin. Plant Physiol. 1988 Nov;88(3):910–914. doi: 10.1104/pp.88.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crouch M. L., Tenbarge K. M., Simon A. E., Ferl R. cDNA clones for Brassica napus seed storage proteins: evidence from nucleotide sequence analysis that both subunits of napin are cleaved from a precursor polypeptide. J Mol Appl Genet. 1983;2(3):273–283. [PubMed] [Google Scholar]
- Echevarría C., Yidal J., Le Maréchal P., Brulfert J., Ranjeva R., Gadal P. The phosphorylation of Sorghum leaf phosphoenolpyruvate carboxylase is a Ca++-calmodulin dependent process. Biochem Biophys Res Commun. 1988 Sep 15;155(2):835–840. doi: 10.1016/s0006-291x(88)80571-0. [DOI] [PubMed] [Google Scholar]
- Ericson M. L., Rödin J., Lenman M., Glimelius K., Josefsson L. G., Rask L. Structure of the rapeseed 1.7 S storage protein, napin, and its precursor. J Biol Chem. 1986 Nov 5;261(31):14576–14581. [PubMed] [Google Scholar]
- Irwin S. D., Keen J. N., Findlay J. B., Lord J. M. The Ricinus communis 2S albumin precursor: a single preproprotein may be processed into two different heterodimeric storage proteins. Mol Gen Genet. 1990 Jul;222(2-3):400–408. doi: 10.1007/BF00633846. [DOI] [PubMed] [Google Scholar]
- Irwin S. D., Lord J. M. Nucleotide sequence of a Ricinus communis 2S albumin precursor gene. Nucleic Acids Res. 1990 Oct 11;18(19):5890–5890. doi: 10.1093/nar/18.19.5890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Josefsson L. G., Lenman M., Ericson M. L., Rask L. Structure of a gene encoding the 1.7 S storage protein, napin, from Brassica napus. J Biol Chem. 1987 Sep 5;262(25):12196–12201. [PubMed] [Google Scholar]
- Krebbers E., Herdies L., De Clercq A., Seurinck J., Leemans J., Van Damme J., Segura M., Gheysen G., Van Montagu M., Vandekerckhove J. Determination of the Processing Sites of an Arabidopsis 2S Albumin and Characterization of the Complete Gene Family. Plant Physiol. 1988 Aug;87(4):859–866. doi: 10.1104/pp.87.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lukas T. J., Burgess W. H., Prendergast F. G., Lau W., Watterson D. M. Calmodulin binding domains: characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase. Biochemistry. 1986 Mar 25;25(6):1458–1464. doi: 10.1021/bi00354a041. [DOI] [PubMed] [Google Scholar]
- Menéndez-Arias L., Moneo I., Domínguez J., Rodríguez R. Primary structure of the major allergen of yellow mustard (Sinapis alba L.) seed, Sin a I. Eur J Biochem. 1988 Oct 15;177(1):159–166. doi: 10.1111/j.1432-1033.1988.tb14357.x. [DOI] [PubMed] [Google Scholar]
- O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
- Pearson R. B., Wettenhall R. E., Means A. R., Hartshorne D. J., Kemp B. E. Autoregulation of enzymes by pseudosubstrate prototopes: myosin light chain kinase. Science. 1988 Aug 19;241(4868):970–973. doi: 10.1126/science.3406746. [DOI] [PubMed] [Google Scholar]
- Polya G. M., Chandra S., Chung R., Neumann G. M., Höj P. B. Purification and characterization of wheat and pine small basic protein substrates for plant calcium-dependent protein kinase. Biochim Biophys Acta. 1992 Apr 17;1120(3):273–280. doi: 10.1016/0167-4838(92)90248-c. [DOI] [PubMed] [Google Scholar]
- Polya G. M., Davies J. R., Micucci V. Properties of a calmodulin-activated Ca2+-dependent protein kinase from wheat germ. Biochim Biophys Acta. 1983 Nov 22;761(1):1–12. doi: 10.1016/0304-4165(83)90355-0. [DOI] [PubMed] [Google Scholar]
- Scofield S. R., Crouch M. L. Nucleotide sequence of a member of the napin storage protein family from Brassica napus. J Biol Chem. 1987 Sep 5;262(25):12202–12208. [PubMed] [Google Scholar]
- Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
- Sharief F. S., Li S. S. Amino acid sequence of small and large subunits of seed storage protein from Ricinus communis. J Biol Chem. 1982 Dec 25;257(24):14753–14759. [PubMed] [Google Scholar]
- Terwilliger T. C., Eisenberg D. The structure of melittin. II. Interpretation of the structure. J Biol Chem. 1982 Jun 10;257(11):6016–6022. [PubMed] [Google Scholar]
- Vogel H., Jähnig F. The structure of melittin in membranes. Biophys J. 1986 Oct;50(4):573–582. doi: 10.1016/S0006-3495(86)83497-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmerman C. L., Appella E., Pisano J. J. Rapid analysis of amino acid phenylthiohydantoins by high-performance liquid chromatography. Anal Biochem. 1977 Feb;77(2):569–573. doi: 10.1016/0003-2697(77)90276-7. [DOI] [PubMed] [Google Scholar]
