Abstract
The critical range of Zn2+ activity in nutrient solution required for optimum growth of barley (Hordeum vulgare L. cv Herta) was studied using the synthetic chelating agent N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid to buffer micronutrient metal ions. The activity of Zn2+ was varied over a wide range from approximately 0.1 x 10-11 to 22 x 10-11 M Zn2+. The dry weight of barley shoots reached a maximum at Zn2+ activities above approximately 3 x 10-11 M and was clearly depressed when Zn2+ activities were below about 1 x 10-11 M. The relationship in shoots between dry weight and Zn concentrations supports the view that there is a critical Zn concentration of about 25 [mu]g g-1 dry weight in whole shoots of barley seedlings. When Zn2+ activities in solution were near or below approximately 3 x 10-11 M, barley shoots accumulated higher concentrations of P, Mn, Ca, Mg, and Na, whereas Cu concentrations were reduced. P and Mn began to accumulate in the shoots before differences in dry weights were apparent and provided the earliest index of Zn deficiency. In Zn-deficient roots, concentrations of Ca and Mg increased by 25 to 30%, and those of Fe and Mn more than doubled. Zn appears to play a special role in regulating uptake of several mineral nutrients in barley.
Full Text
The Full Text of this article is available as a PDF (640.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Miyasaka S. C., Kochian L. V., Shaff J. E., Foy C. D. Mechanisms of Aluminum Tolerance in Wheat : An Investigation of Genotypic Differences in Rhizosphere pH, K, and H Transport, and Root-Cell Membrane Potentials. Plant Physiol. 1989 Nov;91(3):1188–1196. doi: 10.1104/pp.91.3.1188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welch R. M., Norvell W. A. Growth and Nutrient Uptake by Barley (Hordeum vulgare L. cv Herta): Studies Using an N-(2-Hydroxyethyl)ethylenedinitrilotriacetic Acid-Buffered Nutrient Solution Technique (II. Role of Zinc in the Uptake and Root Leakage of Mineral Nutrients). Plant Physiol. 1993 Feb;101(2):627–631. doi: 10.1104/pp.101.2.627. [DOI] [PMC free article] [PubMed] [Google Scholar]