Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1993 Apr;101(4):1157–1162. doi: 10.1104/pp.101.4.1157

Is Acetylcarnitine a Substrate for Fatty Acid Synthesis in Plants?

G Roughan 1, D Post-Beittenmiller 1, J Ohlrogge 1, J Browse 1
PMCID: PMC160633  PMID: 12231767

Abstract

Long-chain fatty acid synthesis from [1-14C]acetylcarnitine by chloroplasts isolated from spinach (Spinacia oleracea), pea (Pisum sativum), amaranthus (Amaranthus lividus), or maize (Zea mays) occurred at less than 2% of the rate of fatty acid synthesis from [1-14C]acetate irrespective of the maturity of the leaves or whether the plastids were purified using sucrose or Percoll medium. [1-14C]-Acetylcarnitine was not significantly utilized by highly active chloroplasts rapidly prepared from pea and spinach using methods not involving density gradient centrifugation. [1-14C]Acetylcarnitine was recovered quantitatively from chloroplast incubations following 10 min in the light. Unlabeled acetyl-L-carnitine (0.4 mM) did not compete with [1-14C]acetate (0.2 mM) as a substrate for fatty acid synthesis by any of the more than 70 chloroplast preparations tested in this study. Carnitine acetyltransferase activity was not detected in any chloroplast preparation and was present in whole leaf homogenates at about 0.1% of the level of acetyl-coenzyme A synthetase activity. When supplied to detached pea shoots and detached spinach, amaranthus, and maize leaves via the transpiration stream, 1 to 4% of the [1-14C]acetylcarnitine and 47 to 57% of the [1-14C]acetate taken up was incorporated into lipids. Most (78-82%) of the [1-14C]acetylcarnitine taken up was recovered intact. It is concluded that acetylcarnitine is not a major precursor for fatty acid synthesis in plants.

Full Text

The Full Text of this article is available as a PDF (694.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Heinz E., Roughan P. G. Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol. 1983 Jun;72(2):273–279. doi: 10.1104/pp.72.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Miflin B. J., Beevers H. Isolation of intact plastids from a range of plant tissues. Plant Physiol. 1974 Jun;53(6):870–874. doi: 10.1104/pp.53.6.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Murphy D. J., Leech R. M. Photosynthesis of Lipids from CO(2) in Spinacia oleracea. Plant Physiol. 1981 Sep;68(3):762–765. doi: 10.1104/pp.68.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Nakatani H. Y., Barber J. An improved method for isolating chloroplasts retaining their outer membranes. Biochim Biophys Acta. 1977 Sep 14;461(3):500–512. [PubMed] [Google Scholar]
  6. Roughan G., Browse J. A preparation and purification of [1-14C]acetylcarnitine. Anal Biochem. 1992 Nov 15;207(1):106–108. doi: 10.1016/0003-2697(92)90509-6. [DOI] [PubMed] [Google Scholar]
  7. Roughan P. G., Holland R., Slack C. R. Acetate is the preferred substrate for long-chain fatty acid synthesis in isolated spinach chloroplasts. Biochem J. 1979 Dec 15;184(3):565–569. doi: 10.1042/bj1840565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Roughan P. G., Holland R., Slack C. R. On the control of long-chain-fatty acid synthesis in isolated intact spinach (Spinacia oleracea) chloroplasts. Biochem J. 1979 Nov 15;184(2):193–202. doi: 10.1042/bj1840193. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES