Abstract
(+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O2-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl2, camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn2+-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Croteau R., El-Bialy H., El-Hindawi S. Metabolism of monoterpenes: lactonization of (+)-camphor and conversion of the corresponding hydroxy acid to the glucoside-glucose ester in sage (Salvia officinalis). Arch Biochem Biophys. 1984 Feb 1;228(2):667–680. doi: 10.1016/0003-9861(84)90037-7. [DOI] [PubMed] [Google Scholar]
- Donaldson R. P., Luster D. G. Multiple forms of plant cytochromes p-450. Plant Physiol. 1991 Jul;96(3):669–674. doi: 10.1104/pp.96.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estabrook R. W., Werringloer J. The measurement of difference spectra: application to the cytochromes of microsomes. Methods Enzymol. 1978;52:212–220. doi: 10.1016/s0076-6879(78)52024-7. [DOI] [PubMed] [Google Scholar]
- Funk C., Koepp A. E., Croteau R. Catabolism of camphor in tissue cultures and leaf disks of common sage (Salvia officinalis). Arch Biochem Biophys. 1992 Apr;294(1):306–313. doi: 10.1016/0003-9861(92)90173-t. [DOI] [PubMed] [Google Scholar]
- Gershenzon J., Duffy M. A., Karp F., Croteau R. Mechanized techniques for the selective extraction of enzymes from plant epidermal glands. Anal Biochem. 1987 May 15;163(1):159–164. doi: 10.1016/0003-2697(87)90106-0. [DOI] [PubMed] [Google Scholar]
- Karp F., Harris J. L., Croteau R. Metabolism of monoterpenes: demonstration of the hydroxylation of (+)-sabinene to (+)-cis-sabinol by an enzyme preparation from sage (Salvia officinalis) leaves. Arch Biochem Biophys. 1987 Jul;256(1):179–193. doi: 10.1016/0003-9861(87)90436-x. [DOI] [PubMed] [Google Scholar]
- Karp F., Mihaliak C. A., Harris J. L., Croteau R. Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch Biochem Biophys. 1990 Jan;276(1):219–226. doi: 10.1016/0003-9861(90)90029-x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lamb C. J., Rubery P. H. A spectrophotometric assay for trans-cinnamic acid 4-hydroxylase activity. Anal Biochem. 1975 Oct;68(2):554–561. doi: 10.1016/0003-2697(75)90651-x. [DOI] [PubMed] [Google Scholar]
- O'keefe D. P., Leto K. J. Cytochrome P-450 from the Mesocarp of Avocado (Persea americana). Plant Physiol. 1989 Apr;89(4):1141–1149. doi: 10.1104/pp.89.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. II. SOLUBILIZATION, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Jul;239:2379–2385. [PubMed] [Google Scholar]
- Reichhart D., Salaün J. P., Benveniste I., Durst F. Time Course of Induction of Cytochrome P-450, NADPH-Cytochrome c Reductase, and Cinnamic Acid Hydroxylase by Phenobarbital, Ethanol, Herbicides, and Manganese in Higher Plant Microsomes. Plant Physiol. 1980 Oct;66(4):600–604. doi: 10.1104/pp.66.4.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ried J. L., Walker-Simmons M. K., Everard J. D., Diani J. Production of polyclonal antibodies in rabbits is simplified using perforated plastic golf balls. Biotechniques. 1992 May;12(5):660–666. [PubMed] [Google Scholar]
- Stewart C. B., Schuler M. A. Antigenic Crossreactivity between Bacterial and Plant Cytochrome P-450 Monoxygenases. Plant Physiol. 1989 Jun;90(2):534–541. doi: 10.1104/pp.90.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu C., Gunsalus I. C. Cytochrome P-450cam. II. Interconversion with P-420. J Biol Chem. 1974 Jan 10;249(1):102–106. [PubMed] [Google Scholar]
