Abstract
Nitrogen accumulation in the apical spikelets on the primary branches of the main stem of rice plants have been studied during the ripening process (0-35 d after flowering). The level of NADH-dependent glutamate synthase (GOGAT) protein and activity increased 4- and 6-fold, respectively, in the first 15 d after flowering. Maximum levels of NADH-GOGAT were found at that time when the spikelets had just begun to increase in dry weight and to accumulate storage proteins. Subsequently, both the level of NADH-GOGAT protein and its activity in spikelets declined rapidly. Although changes in ferredoxin (Fd)-dependent GOGAT paralleled changes in NADH-GOGAT, the relative abundance of NADH-GOGAT protein in the spikelets was about 3 times higher than that of Fd-GOGAT from 5 to 15 d after flowering. When the chaff (lemma and palea) was separated from the spikelets 10 d after the flowering, 16% of the NADH-GOGAT protein was found in the chaff and 84% in the young grain tissues (endosperm, testae, aleurone tissues, and embryo). On the other hand, Fd-GOGAT protein was distributed 52% in the chaff and 48% in the young grain tissues in spikelets of the same age. Activity of NADP-isocitrate dehydrogenase, which may generate the 2-oxoglutarate required for the GOGAT reactions, was much higher than that of total GOGAT activities on a spikelet basis during the ripening process. These results suggest that in rice plants NADH-GOGAT is responsible for the synthesis of glutamate from the glutamine that is transported from senescing tissues to the spikelets.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen R., Le Maréchal P., Vidal J., Jacquot J. P., Gadal P. Purification and comparative properties of the cytosolic isocitrate dehydrogenases (NADP) from pea (Pisum sativum) roots and green leaves. Eur J Biochem. 1988 Aug 15;175(3):565–572. doi: 10.1111/j.1432-1033.1988.tb14229.x. [DOI] [PubMed] [Google Scholar]
- Kamachi K., Yamaya T., Hayakawa T., Mae T., Ojima K. Vascular bundle-specific localization of cytosolic glutamine synthetase in rice leaves. Plant Physiol. 1992 Aug;99(4):1481–1486. doi: 10.1104/pp.99.4.1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamachi K., Yamaya T., Mae T., Ojima K. A Role for Glutamine Synthetase in the Remobilization of Leaf Nitrogen during Natural Senescence in Rice Leaves. Plant Physiol. 1991 Jun;96(2):411–417. doi: 10.1104/pp.96.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris P. F., Layzell D. B., Canvin D. T. Ammonia Production and Assimilation in Glutamate Synthase Mutants of Arabidopsis thaliana. Plant Physiol. 1988 May;87(1):148–154. doi: 10.1104/pp.87.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakakibara H., Watanabe M., Hase T., Sugiyama T. Molecular cloning and characterization of complementary DNA encoding for ferredoxin-dependent glutamate synthase in maize leaf. J Biol Chem. 1991 Feb 5;266(4):2028–2035. [PubMed] [Google Scholar]
- Suzuki A., Audet C., Oaks A. Influence of light on the ferredoxin-dependent glutamate synthase in maize leaves. Plant Physiol. 1987 Jul;84(3):578–581. doi: 10.1104/pp.84.3.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki A., Gadal P. Glutamate synthase from rice leaves. Plant Physiol. 1982 Apr;69(4):848–852. doi: 10.1104/pp.69.4.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamagata H., Sugimoto T., Tanaka K., Kasai Z. Biosynthesis of storage proteins in developing rice seeds. Plant Physiol. 1982 Oct;70(4):1094–1100. doi: 10.1104/pp.70.4.1094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaya T., Hayakawa T., Tanasawa K., Kamachi K., Mae T., Ojima K. Tissue Distribution of Glutamate Synthase and Glutamine Synthetase in Rice Leaves : Occurrence of NADH-Dependent Glutamate Synthase Protein and Activity in the Unexpanded, Nongreen Leaf Blades. Plant Physiol. 1992 Nov;100(3):1427–1432. doi: 10.1104/pp.100.3.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
