Abstract
The hydraulic architecture of developing onion (Allium cepa L. cv Calypso) roots grown hydroponically was determined by measuring axial and radial hydraulic conductivities (equal to inverse of specific hydraulic resistances). In the roots, Casparian bands and suberin lamellae develop in the endodermis and exodermis (equal to hypodermis). Using the root pressure probe, changes of hydraulic conductivities along the developing roots were analyzed with high resolution. Axial hydraulic conductivity (Lx) was also calculated from stained cross-sections according to Poiseuille's law. Near the base and the tip of the roots, measured and calculated Lx values were similar. However, at distances between 200 and 300 mm from the apex, measured values of Lx were smaller by more than 1 order of magnitude than those calculated, probably because of remaining cross walls between xylem vessel members. During development of root xylem, Lx increased by 3 orders of magnitude. In the apical 30 mm (tip region), axial resistance limited water transport, whereas in basal parts radial resistances (low radial hydraulic conductivity, Lpr) controlled the uptake. Because of the high axial hydraulic resistance in the tip region, this zone appeared to be "hydraulically isolated" from the rest of the root. Changes of the Lpr of the roots were determined by measuring the hydraulic conductance of roots of different length and referring these data to unit surface area. At distances between 30 and 150 mm from the root tip, Lpr was fairly constant (1.4 x 10-7 m s-1 MPa-1). In more basal root zones, Lpr was considerably smaller and varied between roots. The low contribution of basal zones to the overall water uptake indicated an influence of the exodermal Casparian bands and/or suberin lamellae in the endodermis or exodermis, which develop at distances larger than 50 to 60 mm from the root tip.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azaizeh H., Gunse B., Steudle E. Effects of NaCl and CaCl(2) on Water Transport across Root Cells of Maize (Zea mays L.) Seedlings. Plant Physiol. 1992 Jul;99(3):886–894. doi: 10.1104/pp.99.3.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azaizeh H., Steudle E. Effects of Salinity on Water Transport of Excised Maize (Zea mays L.) Roots. Plant Physiol. 1991 Nov;97(3):1136–1145. doi: 10.1104/pp.97.3.1136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiscus E. L. The Interaction between Osmotic- and Pressure-induced Water Flow in Plant Roots. Plant Physiol. 1975 May;55(5):917–922. doi: 10.1104/pp.55.5.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frensch J., Steudle E. Axial and Radial Hydraulic Resistance to Roots of Maize (Zea mays L.). Plant Physiol. 1989 Oct;91(2):719–726. doi: 10.1104/pp.91.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Girma F. S., Krieg D. R. Osmotic adjustment in sorghum: I. Mechanisms of diurnal osmotic potential changes. Plant Physiol. 1992 Jun;99(2):577–582. doi: 10.1104/pp.99.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller D. M. Studies of Root Function in Zea mays: III. Xylem Sap Composition at Maximum Root Pressure Provides Evidence of Active Transport into the Xylem and a Measurement of the Reflection Coefficient of the Root. Plant Physiol. 1985 Jan;77(1):162–167. doi: 10.1104/pp.77.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pitman M. G., Wellfare D., Carter C. Reduction of Hydraulic Conductivity during Inhibition of Exudation from Excised Maize and Barley Roots. Plant Physiol. 1981 Apr;67(4):802–808. doi: 10.1104/pp.67.4.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosene H. F. DISTRIBUTION OF THE VELOCITIES OF ABSORPTION OF WATER IN THE ONION ROOT. Plant Physiol. 1937 Jan;12(1):1–19. doi: 10.1104/pp.12.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steudle E., Oren R., Schulze E. D. Water transport in maize roots : measurement of hydraulic conductivity, solute permeability, and of reflection coefficients of excised roots using the root pressure probe. Plant Physiol. 1987 Aug;84(4):1220–1232. doi: 10.1104/pp.84.4.1220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu G. L., Steudle E. Water Transport across Maize Roots : Simultaneous Measurement of Flows at the Cell and Root Level by Double Pressure Probe Technique. Plant Physiol. 1991 Jan;95(1):305–315. doi: 10.1104/pp.95.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]