Abstract
We have previously demonstrated that the double bond of petroselinic acid (18:1[delta]6cis) in coriander (Coriandrum sativum L.) seed results from the activity of a 36-kD desaturase that is structurally related to the [delta]9-stearoyl-acyl carrier protein (ACP) desaturase (E.B. Cahoon, J. Shanklin, J.B. Ohlrogge [1992] Proc Natl Acad Sci USA 89: 11184-11188). To further characterize the biosynthetic pathway of this unusual fatty acid, 14C-labeling experiments were conducted using developing endosperm of coriander. Studies were also performed using suspension cultures of transgenic tobacco (Nicotiana tabacum L.) that express the coriander 36-kD desaturase, and as a result produce petroselinic acid and [delta]4-hexadecenoic acid. When supplied exogenously to coriander endosperm slices, [1-14C]palmitic acid and stearic acid were incorporated into glycerolipids but were not converted to petroselinic acid. This suggested that petroselinic acid is not formed by the desaturation of a fatty acid bound to a glycerolipid or by reactions involving acyl-coenzyme As (CoA). Instead, evidence was most consistent with an acyl-ACP route of petroselinic acid synthesis. For example, the exogenous feeding of [1-14C]lauric acid and myristic acid to coriander endosperm slices resulted in the incorporation of the radiolabels into long-chain fatty acids, including primarily petroselinic acid, presumably through acyl-ACP-associated reactions. In addition, using an in vitro fatty acid biosynthetic system, homogenates of coriander endosperm incorporated [2-14C]malonyl-CoA into petroselinic acid, of which a portion was detected in a putative acyl-ACP fraction. Furthermore, analysis of transgenic tobacco suspension cultures expressing the coriander 36-kD desaturase revealed significant amounts of petroselinic acid and [delta]4-hexadecenoic acid in the acyl-ACP pool of these cells. Also presented is evidence derived from [U-14C]nonanoic acid labeling of coriander endosperm, which demonstrates that the coriander 36-kD desaturase positions double bonds relative to the carboxyl end of acyl-ACP substrates. The data obtained in these studies are rationalized in terms of a biosynthetic pathway of petroselinic acid involving the [delta]4 desaturation of palmitoyl-ACP by the 36-kD desaturase followed by two-carbon elongation of the resulting [delta]4-hexadecenoyl-ACP.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- BLOOMFIELD D. K., BLOCH K. The formation of delta 9-unsaturated fatty acids. J Biol Chem. 1960 Feb;235:337–345. [PubMed] [Google Scholar]
- Bartels C. T., James A. T., Nichols B. W. Metabolism of trans-3-hexadecenoic acid by Chlorella vulgaris and by lettuce leaf. Eur J Biochem. 1967 Dec;3(1):7–10. doi: 10.1111/j.1432-1033.1967.tb19492.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cahoon E. B., Shanklin J., Ohlrogge J. B. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11184–11188. doi: 10.1073/pnas.89.23.11184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerra D. J., Ohlrogge J. B., Frentzen M. Activity of acyl carrier protein isoforms in reactions of plant Fatty Acid metabolism. Plant Physiol. 1986 Oct;82(2):448–453. doi: 10.1104/pp.82.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurr M. I., Robinson M. P., James A. T. The mechanism of formation of polyunsaturated fatty acids by photosynthetic tissue. The tight coupling of oleate desaturation with phospholipid synthesis in Chlorella vulgaris. Eur J Biochem. 1969 May 1;9(1):70–78. doi: 10.1111/j.1432-1033.1969.tb00577.x. [DOI] [PubMed] [Google Scholar]
- HOLLOWAY P. W., PELUFFO R., WAKIL S. J. ON THE BIOSYNTHESIS OF DIENOIC FATTY ACID BY ANIMAL TISSUES. Biochem Biophys Res Commun. 1963 Aug 1;12:300–304. doi: 10.1016/0006-291x(63)90300-0. [DOI] [PubMed] [Google Scholar]
- Higashi S., Murata N. An in Vivo Study of Substrate Specificities of Acyl-Lipid Desaturases and Acyltransferases in Lipid Synthesis in Synechocystis PCC6803. Plant Physiol. 1993 Aug;102(4):1275–1278. doi: 10.1104/pp.102.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaworski J. G., Stumpf P. K. Fat metabolism in higher plants. Properties of a soluble stearyl-acyl carrier protein desaturase from maturing Carthamus tinctorius. Arch Biochem Biophys. 1974 May;162(1):158–165. doi: 10.1016/0003-9861(74)90114-3. [DOI] [PubMed] [Google Scholar]
- Mancha M., Stokes G. B., Stumpf P. K. Fat metabolism in higher plants. The determination of acyl-acyl carrier protein and acyl coenzyme A in a complex lipid mixture 1,2. Anal Biochem. 1975 Oct;68(2):600–608. doi: 10.1016/0003-2697(75)90655-7. [DOI] [PubMed] [Google Scholar]
- Moreau R. A., Pollard M. R., Stumpf P. K. Properties of a delta 5-fatty acyl-CoA desaturase in the cotyledons of developing Limnanthes alba. Arch Biochem Biophys. 1981 Jul;209(2):376–384. doi: 10.1016/0003-9861(81)90295-2. [DOI] [PubMed] [Google Scholar]
- Nagai J., Bloch K. Enzymatic desaturation of stearyl acyl carrier protein. J Biol Chem. 1968 Sep 10;243(17):4626–4633. [PubMed] [Google Scholar]
- Norman H. A., John J. B. Metabolism of Unsaturated Monogalactosyldiacylglycerol Molecular Species in Arabidopsis thaliana Reveals Different Sites and Substrates for Linolenic Acid Synthesis. Plant Physiol. 1986 Jul;81(3):731–736. doi: 10.1104/pp.81.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norman H. A., Smith L. A., Lynch D. V., Thompson G. A., Jr Low-temperature-induced changes in intracellular fatty acid fluxes in Dunaliella salina. Arch Biochem Biophys. 1985 Oct;242(1):157–167. doi: 10.1016/0003-9861(85)90489-8. [DOI] [PubMed] [Google Scholar]
- Pollard M. R., Stumpf P. K. Biosynthesis of C(20) and C(22) Fatty Acids by Developing Seeds of Limnanthes alba: CHAIN ELONGATION AND Delta5 DESATURATION. Plant Physiol. 1980 Oct;66(4):649–655. doi: 10.1104/pp.66.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rock C. O., Garwin J. L. Preparative enzymatic synthesis and hydrophobic chromatography of acyl-acyl carrier protein. J Biol Chem. 1979 Aug 10;254(15):7123–7128. [PubMed] [Google Scholar]
- Roughan P. G., Thompson G. A., Jr, Cho S. H. Metabolism of exogenous long-chain fatty acids by spinach leaves. Arch Biochem Biophys. 1987 Dec;259(2):481–496. doi: 10.1016/0003-9861(87)90515-7. [DOI] [PubMed] [Google Scholar]
- Rutkoski A., Jaworski J. G. An improved synthesis of malonyl-coenzyme A. Anal Biochem. 1978 Nov;91(1):370–373. doi: 10.1016/0003-2697(78)90854-0. [DOI] [PubMed] [Google Scholar]
- Shibahara A., Yamamoto K., Takeoka M., Kinoshita A., Kajimoto G., Nakayama T., Noda M. Novel pathways of oleic and cis-vaccenic acid biosynthesis by an enzymatic double-bond shifting reaction in higher plants. FEBS Lett. 1990 May 21;264(2):228–230. doi: 10.1016/0014-5793(90)80254-g. [DOI] [PubMed] [Google Scholar]
- Slack C. R., Roughan P. G., Balasingham N. Labelling of glycerolipids in the cotyledons of developing oilseeds by [1-14C] acetate and [2-3H] glycerol. Biochem J. 1978 Feb 15;170(2):421–433. doi: 10.1042/bj1700421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srere P. A. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89–124. doi: 10.1146/annurev.bi.56.070187.000513. [DOI] [PubMed] [Google Scholar]
- Stymne S., Appelqvist L. A. The biosynthesis of linoleate from oleoyl-CoA via oleoyl-phosphatidylcholine in microsomes of developing safflower seeds. Eur J Biochem. 1978 Oct;90(2):223–229. doi: 10.1111/j.1432-1033.1978.tb12594.x. [DOI] [PubMed] [Google Scholar]
- Stymne S., Stobart A. K. Biosynthesis of gamma-linolenic acid in cotyledons and microsomal preparations of the developing seeds of common borage (Borago officinalis). Biochem J. 1986 Dec 1;240(2):385–393. doi: 10.1042/bj2400385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor D. C., Weber N., Hogge L. R., Underhill E. W. A simple enzymatic method for the preparation of radiolabeled erucoyl-CoA and other long-chain fatty acyl-CoAs and their characterization by mass spectrometry. Anal Biochem. 1990 Feb 1;184(2):311–316. doi: 10.1016/0003-2697(90)90686-4. [DOI] [PubMed] [Google Scholar]