Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Mar;104(3):899–906. doi: 10.1104/pp.104.3.899

Ammonium Uptake by Rice Roots (III. Electrophysiology).

M Y Wang 1, ADM Glass 1, J E Shaff 1, L V Kochian 1
PMCID: PMC160687  PMID: 12232135

Abstract

The transmembrane electrical potential differences ([delta][psi]) were measured in epidermal and cortical cells of intact roots of 3-week-old rice (Oryza sativa L. cv M202) seedlings grown in 2 or 100 [mu]M NH4+ (G2 or G100 plants, respectively). In modified Johnson's nutrient solution containing no nitrogen, [delta][psi] was in the range of -120 to -140 mV. Introducing NH4+ to the bathing medium caused a rapid depolarization. At the steady state, average [delta][psi] of G2 and G100 plants were -116 and -89 mV, respectively. This depolarization exhibited a biphasic response to external NH4+ concentration similar to that reported for 13NH4+ influx isotherms (M.Y. Wang, M.Y. Siddiqi, T.J. Ruth, A.D.M. Glass [1993] Plant Physiol 103: 1259-1267). Plots of membrane depolarization versus 13NH4+ influx were also biphasic, indicating distinct coupling processes for the two transport systems, with a breakpoint between two concentration ranges around 1 mM NH4+. The extent of depolarization was also influenced by nitrogen status, which was larger for G2 plants than for G100 plants. Depolarization of [delta][psi] due to NH4+ uptake was eliminated by a protonophore (carboxylcyanide-m-chlorophenylhydrazone), inhibitors of ATP synthesis (sodium cyanide plus salicylhydroxamic acid), or an ATPase inhibitor (diethylstilbestrol). The results of these observations are discussed in the context of the mechanisms of NH4+ uptake by high- and low-affinity transport systems operating across the plasma membranes of root cells.

Full Text

The Full Text of this article is available as a PDF (745.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Felle H. Amine transport at the plasmalemma of Riccia fluitans. Biochim Biophys Acta. 1980 Oct 16;602(1):181–195. doi: 10.1016/0005-2736(80)90300-4. [DOI] [PubMed] [Google Scholar]
  2. Glass A. D., Shaff J. E., Kochian L. V. Studies of the Uptake of Nitrate in Barley : IV. Electrophysiology. Plant Physiol. 1992 Jun;99(2):456–463. doi: 10.1104/pp.99.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Higinbotham N., Etherton B., Foster R. J. Effect of External K, NH(4), Na, Ca, Mg, and H Ions on the Cell Transmembrane Electropotential of Avena Coleoptile. Plant Physiol. 1964 Mar;39(2):196–203. doi: 10.1104/pp.39.2.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kleiner D. The transport of NH3 and NH4+ across biological membranes. Biochim Biophys Acta. 1981 Nov 9;639(1):41–52. doi: 10.1016/0304-4173(81)90004-5. [DOI] [PubMed] [Google Scholar]
  5. Kochian L. V., Shaff J. E., Lucas W. J. High affinity k uptake in maize roots: a lack of coupling with h efflux. Plant Physiol. 1989 Nov;91(3):1202–1211. doi: 10.1104/pp.91.3.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. McClure P. R., Kochian L. V., Spanswick R. M., Shaff J. E. Evidence for cotransport of nitrate and protons in maize roots : I. Effects of nitrate on the membrane potential. Plant Physiol. 1990 May;93(1):281–289. doi: 10.1104/pp.93.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rygiewicz P. T., Bledsoe C. S., Glass A. D. A comparison of methods for determining compartmental analysis parameters. Plant Physiol. 1984 Dec;76(4):913–917. doi: 10.1104/pp.76.4.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Schachtman D. P., Schroeder J. I., Lucas W. J., Anderson J. A., Gaber R. F. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science. 1992 Dec 4;258(5088):1654–1658. doi: 10.1126/science.8966547. [DOI] [PubMed] [Google Scholar]
  9. Wang M. Y., Siddiqi M. Y., Ruth T. J., Glass ADM. Ammonium Uptake by Rice Roots (I. Fluxes and Subcellular Distribution of 13NH4+). Plant Physiol. 1993 Dec;103(4):1249–1258. doi: 10.1104/pp.103.4.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wang M. Y., Siddiqi M. Y., Ruth T. J., Glass ADM. Ammonium Uptake by Rice Roots (II. Kinetics of 13NH4+ Influx across the Plasmalemma). Plant Physiol. 1993 Dec;103(4):1259–1267. doi: 10.1104/pp.103.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES