Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Mar;104(3):953–959. doi: 10.1104/pp.104.3.953

Branching Mutant rms-2 in Pisum sativum (Grafting Studies and Endogenous Indole-3-Acetic Acid Levels).

C A Beveridge 1, J J Ross 1, I C Murfet 1
PMCID: PMC160693  PMID: 12232140

Abstract

Isogenic lines of pea (Pisum sativum L.) were used to determine the physiological site of action of the Rms-2 gene, which maintains apical dominance, and its effect on endogenous free indole-3-acetic acid (IAA) levels. In mutant rms-2 scions, which normally produce lateral branches below node 3 and above node 7, apical dominance was almost fully restored by grafting to Rms-2 (wild-type) stocks. In the reciprocal grafts, rms-2 stocks did not promote branching in wild-type shoots. Together, these results suggest that the Rms-2 gene inhibits branching in the shoot of pea by controlling the synthesis of a translocatable (hormone-like) substance that is produced in the roots and/or cotyledons and in the shoot. At all stages, including the stage at which aerial lateral buds commence outgrowth, the level of IAA in rms-2 shoots was elevated (up to 5-fold) in comparison with that in wild-type shoots. The internode length of rms-2 plants was 40% less than in wild-type plants, and the mutant plants allocated significantly more dry weight to the shoot than to the root in comparison with wild-type plants. Grafting to wild-type stocks did not normalize IAA levels or internode length in rms-2 scions, even though it inhibited branching, suggesting that the involvement of Rms-2 in the control of IAA level and internode length may be confined to processes in the shoot.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bygbjerg I. C., Jepsen S., Theander T. G. Lymphocyte response to purified Plasmodium falciparum antigens during and after malaria. Acta Trop. 1986 Mar;43(1):55–62. [PubMed] [Google Scholar]
  2. Medford J. I., Horgan R., El-Sawi Z., Klee H. J. Alterations of Endogenous Cytokinins in Transgenic Plants Using a Chimeric Isopentenyl Transferase Gene. Plant Cell. 1989 Apr;1(4):403–413. doi: 10.1105/tpc.1.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Romano C. P., Cooper M. L., Klee H. J. Uncoupling Auxin and Ethylene Effects in Transgenic Tobacco and Arabidopsis Plants. Plant Cell. 1993 Feb;5(2):181–189. doi: 10.1105/tpc.5.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Romano C. P., Hein M. B., Klee H. J. Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev. 1991 Mar;5(3):438–446. doi: 10.1101/gad.5.3.438. [DOI] [PubMed] [Google Scholar]
  5. Sitbon F., Hennion S., Sundberg B., Little C. H., Olsson O., Sandberg G. Transgenic Tobacco Plants Coexpressing the Agrobacterium tumefaciens iaaM and iaaH Genes Display Altered Growth and Indoleacetic Acid Metabolism. Plant Physiol. 1992 Jul;99(3):1062–1069. doi: 10.1104/pp.99.3.1062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Smigocki A. C., Owens L. D. Cytokinin-to-Auxin Ratios and Morphology of Shoots and Tissues Transformed by a Chimeric Isopentenyl Transferase Gene. Plant Physiol. 1989 Nov;91(3):808–811. doi: 10.1104/pp.91.3.808. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES