Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1994 Jul;105(3):799–813. doi: 10.1104/pp.105.3.799

Ion Channels in the Xylem Parenchyma of Barley Roots (A Procedure to Isolate Protoplasts from This Tissue and a Patch-Clamp Exploration of Salt Passageways into Xylem Vessels.

L H Wegner 1, K Raschke 1
PMCID: PMC160726  PMID: 12232243

Abstract

To identify mechanisms for the simultaneous release of anions and cations into the xylem sap in roots, we investigated voltage-dependent ion conductances in the plasmalemma of xylem parenchyma cells. We applied the patch-clamp technique to protoplasts isolated from the xylem parenchyma by differential enzymic digestion of steles of barley roots (Hordeum vulgare L. cv Apex). In the whole-cell configuration, three types of cation-selective rectifiers could be identified: (a) one activated at membrane potentials above about -50 mV; (b) a second type of outward current appeared at membrane potentials above +20 to +40 mV; (c) below a membrane potential of approximately -110 mV, an inward rectifier could be distinguished. In addition, an anion-specific conductance manifested itself in single-channel activity in a voltage range extending from about -100 to +30 mV, with remarkably slow gating. In excised patches, K+ channels activated at hyperpolarization as well as at depolarization. We suggest that salt is released from the xylem parenchyma into the xylem apoplast by simultaneous flow of cations and anions through channels, following electrochemical gradients set up by the ion uptake processes in the cortex and, possibly, the release and reabsorption of ions on their way to the xylem.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Föhr K. J., Warchol W., Gratzl M. Calculation and control of free divalent cations in solutions used for membrane fusion studies. Methods Enzymol. 1993;221:149–157. doi: 10.1016/0076-6879(93)21014-y. [DOI] [PubMed] [Google Scholar]
  2. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  3. Hanson J. B. Application of the chemiosmotic hypothesis to ion transport across the root. Plant Physiol. 1978 Sep;62(3):402–405. doi: 10.1104/pp.62.3.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hedrich R., Busch H., Raschke K. Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J. 1990 Dec;9(12):3889–3892. doi: 10.1002/j.1460-2075.1990.tb07608.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ketchum K. A., Shrier A., Poole R. J. Characterization of potassium-dependent currents in protoplasts of corn suspension cells. Plant Physiol. 1989 Apr;89(4):1184–1192. doi: 10.1104/pp.89.4.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Läuchli A., Spurr A. R., Epstein E. Lateral Transport of Ions into the Xylem of Corn Roots: II. Evaluation of a Stelar Pump. Plant Physiol. 1971 Aug;48(2):118–124. doi: 10.1104/pp.48.2.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Maathuis F. J., Prins H. B. Patch clamp studies on root cell vacuoles of a salt-tolerant and a salt-sensitive plantago species : regulation of channel activity by salt stress. Plant Physiol. 1990 Jan;92(1):23–28. doi: 10.1104/pp.92.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Moran N., Ehrenstein G., Iwasa K., Mischke C., Bare C., Satter R. L. Potassium Channels in Motor Cells of Samanea saman: A Patch-Clamp Study. Plant Physiol. 1988 Nov;88(3):643–648. doi: 10.1104/pp.88.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neher E. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 1992;207:123–131. doi: 10.1016/0076-6879(92)07008-c. [DOI] [PubMed] [Google Scholar]
  10. Parets-Soler A., Pardo J. M., Serrano R. Immunocytolocalization of Plasma Membrane H-ATPase. Plant Physiol. 1990 Aug;93(4):1654–1658. doi: 10.1104/pp.93.4.1654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schachtman D. P., Tyerman S. D., Terry B. R. The k/na selectivity of a cation channel in the plasma membrane of root cells does not differ in salt-tolerant and salt-sensitive wheat species. Plant Physiol. 1991 Oct;97(2):598–605. doi: 10.1104/pp.97.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Spalding E. P., Slayman C. L., Goldsmith M. H., Gradmann D., Bertl A. Ion channels in Arabidopsis plasma membrane : transport characteristics and involvement in light-induced voltage changes. Plant Physiol. 1992 May;99(1):96–102. doi: 10.1104/pp.99.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stoeckel H., Takeda K. Plasmalemmal, voltage-dependent ionic currents from excitable pulvinar motor cells of Mimosa pudica. J Membr Biol. 1993 Feb;131(3):179–192. doi: 10.1007/BF02260107. [DOI] [PubMed] [Google Scholar]
  14. Thiel G., MacRobbie E. A., Blatt M. R. Membrane transport in stomatal guard cells: the importance of voltage control. J Membr Biol. 1992 Feb;126(1):1–18. doi: 10.1007/BF00233456. [DOI] [PubMed] [Google Scholar]
  15. Van Duijn B., Ypey D. L., Libbenga K. R. Whole-Cell K+ Currents across the Plasma Membrane of Tobacco Protoplasts from Cell-Suspension Cultures. Plant Physiol. 1993 Jan;101(1):81–88. doi: 10.1104/pp.101.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES