Abstract
The effects of the impermeant electron acceptor hexacyanoferrate III (HCF III) and the potassium channel blocker tetraethylam-monium (TEA) on the current-voltage relationship and electrical potential across the plasma membrane of Limnobium stoloniferum root hairs was investigated using a modified sucrose gap technique. One millimolar HCF III immediately and reversibly depolarized the membrane by 27 mV, whereas the effect on the trans-membrane current was markedly delayed. After 6 min of treatment with this electron acceptor, outwardly rectifying current was inhibited by 50%, whereas the inwardly rectifying current was activated approximately 3-fold. Ten millimolar TEA blocked both outward (65%) and inward (52%) currents. Differential TEA-sensitive current was shown to be blocked (55%) by HCF III at -20 mV and was shown to be stimulated (230%) by this electron acceptor at -200 mV. The inward current at -200 mV was eliminated in the absence of K+ or after addition of 10 mM Cs+ and was not affected by addition of either 10mM Na+ or Li+, independent of the presence of HCF III. The addition of any alkali cation to the external medium decreased the outward current both in the presence and in the absence of HCF III. The membrane depolarization evoked by HCF III did not correlate with the corresponding modification of the inward current. HCF III is proposed to activate inwardly rectifying potassium channels and to inactivate outwardly rectifying potassium channels. It is concluded that the plasma membrane depolarization did not result from modulation of the potassium channels by HCF III and may originate from trans-plasma membrane electron transfer.
Full Text
The Full Text of this article is available as a PDF (877.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apostol I., Heinstein P. F., Low P. S. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. doi: 10.1104/pp.90.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertl A., Slayman C. L. Cation-selective channels in the vacuolar membrane of Saccharomyces: dependence on calcium, redox state, and voltage. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7824–7828. doi: 10.1073/pnas.87.20.7824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böttger M., Hilgendorf F. Hormone action on transmembrane electron and h transport. Plant Physiol. 1988 Apr;86(4):1038–1043. doi: 10.1104/pp.86.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Federico R., Giartosio C. E. A transplasmamembrane electron transport system in maize roots. Plant Physiol. 1983 Sep;73(1):182–184. doi: 10.1104/pp.73.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishikawa T., Cook D. I. Effects of K+ channel blockers on inwardly and outwardly rectifying whole-cell K+ currents in sheep parotid secretory cells. J Membr Biol. 1993 Apr;133(1):29–41. doi: 10.1007/BF00231875. [DOI] [PubMed] [Google Scholar]
- Kuo S. S., Saad A. H., Koong A. C., Hahn G. M., Giaccia A. J. Potassium-channel activation in response to low doses of gamma-irradiation involves reactive oxygen intermediates in nonexcitatory cells. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):908–912. doi: 10.1073/pnas.90.3.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubinstein B., Stern A. I. Relationship of Transplasmalemma Redox Activity to Proton and Solute Transport by Roots of Zea mays. Plant Physiol. 1986 Apr;80(4):805–811. doi: 10.1104/pp.80.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruppersberg J. P., Stocker M., Pongs O., Heinemann S. H., Frank R., Koenen M. Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature. 1991 Aug 22;352(6337):711–714. doi: 10.1038/352711a0. [DOI] [PubMed] [Google Scholar]
- Ullrich C. I., Novacky A. J. Extra- and Intracellular pH and Membrane Potential Changes Induced by K, Cl, H(2)PO(4), and NO(3) Uptake and Fusicoccin in Root Hairs of Limnobium stoloniferum. Plant Physiol. 1990 Dec;94(4):1561–1567. doi: 10.1104/pp.94.4.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]